网络爬虫——数据清洗与简单处理

在数据爬取后,清洗和处理是数据分析的关键步骤。无论是去除冗余数据、格式化日期,还是对字符串进行规范化处理,数据清洗能显著提升后续处理的效率和准确性。本节将详细介绍如何实现 数据去重、格式化 以及 字符串处理与正则表达式的应用,结合实用场景与代码示例,让开发者能够高效处理爬取的数据。


1. 数据去重与数据格式化

1.1 数据去重
1.1.1 去重的必要性
  • 在爬取过程中,由于页面重复加载、URL 参数变化等原因,可能会导致重复数据。
  • 重复数据不仅浪费存储空间,还会影响分析结果。
1.1.2 常见去重方法
  • 基于 Python 集合(set)的去重
    集合是天然去重的结构,适用于简单数据类型。
  • 基于键值对的去重
    对于复杂的字典列表,通过指定唯一标识进行去重。
1.1.3 示例代码
  • 简单列表去重
# 简单去重
data = [1, 2, 2, 3, 4, 4, 5]
unique_data = list(set(data))
print(unique_data)  # 输出: [1, 2, 3, 4, 5]
  • 字典列表去重
# 字典列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好看资源分享

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值