在数据爬取后,清洗和处理是数据分析的关键步骤。无论是去除冗余数据、格式化日期,还是对字符串进行规范化处理,数据清洗能显著提升后续处理的效率和准确性。本节将详细介绍如何实现 数据去重、格式化 以及 字符串处理与正则表达式的应用,结合实用场景与代码示例,让开发者能够高效处理爬取的数据。
1. 数据去重与数据格式化
1.1 数据去重
1.1.1 去重的必要性
- 在爬取过程中,由于页面重复加载、URL 参数变化等原因,可能会导致重复数据。
- 重复数据不仅浪费存储空间,还会影响分析结果。
1.1.2 常见去重方法
- 基于 Python 集合(set)的去重
集合是天然去重的结构,适用于简单数据类型。 - 基于键值对的去重
对于复杂的字典列表,通过指定唯一标识进行去重。
1.1.3 示例代码
- 简单列表去重
# 简单去重
data = [1, 2, 2, 3, 4, 4, 5]
unique_data = list(set(data))
print(unique_data) # 输出: [1, 2, 3, 4, 5]
- 字典列表去重
# 字典列