使用Python进行人脸定位和特征点检测

前言

在课上学习了人脸识别相关的入门知识,并运行了授课师姐提供的demo,记录如下:
人脸识别的一般步骤是

  1. 人脸检测
  2. 人脸对齐
  3. 提取人脸特征向量
  4. 人脸匹配

出于环境配置方便考虑,这里直接使用了Colab跑demo。运行结果和具体代码见Colab Notebook

人脸定位

利用OpenCV进行人脸定位

环境配置
检测函数

使用时直接调用

def detect(filename):
	# xml文件路径
    face_cascade = cv2.CascadeClassifier('/usr/local/lib/python3.7/dist-packages/cv2/data/haarcascade_frontalface_default.xml')

    img = cv2.imread(filename)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

    cv2_imshow(img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

利用face_recognition + Dlib进行人脸定位

环境配置
pip install dlib
pip install face_recognition

效果如图
在这里插入图片描述

特征点检测

环境配置

需要下载包:shape_predictor_68_face_landmarks.dat
经过效果如图
在这里插入图片描述

人脸对齐和人脸识别

“根据上一步检测到的特征点,进行平移旋转等操作,将人脸位于正面,便于机器识别”

将对齐后的人脸输入特征向量提取器得到人脸的特征向量;结果特征向量与数据库中已有的数据进行匹配得到识别结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值