关于过渡矩阵和坐标变换公式的思考
前言
学习线性代数的时候一直很难理解过渡矩阵和坐标变换公式的概念,看到题目里求某向量在A基和B基下的坐标,除了蒙个公式上去几乎是无法思考。到了新学期,这些概念兜兜转转又回来了,是时候了结它们了。其实我思考的过程就是教科书上论述的过程,只是自己表述一遍会理解得更深刻一些
过渡矩阵与坐标变换公式(数字的问题要用数字的方式解决)
(一点废话)之前有尝试用矩阵变换的方式理解过渡矩阵和坐标变换,一度陷入误区,后来发现是缘木求鱼了。其实这类抽象数字之间的关系还是用式子来理解最直接,可能等认识再深入才能体会这背后的几何关系吧
过渡矩阵
假设B基和A基是同一线性空间下两组不同的基向量(注意,是不同的两组向量),下示公式表示了A和B之间的关系
B
=
A
P
B=AP
B=AP
其中,P被称为过渡矩阵。这个式子的含义实际上是用A基来表示B基,我们试图通过某种方式来找到A基和B基之间的联系,联系的推导过程如下:
B
=
E
B
=
A
A
−
1
B
=
A
P
P
=
A
−
1
B
B=EB=AA^{-1}B=AP\\P=A^{-1}B
B=EB=AA−1B=APP=A−1B
通过单位阵变换我们可以很轻易的找到从A到B的表示方法,并把其中
A
−
1
B
A^{-1}B
A−1B 的积矩阵定义为过渡矩阵
P
P
P。其中没有什么复杂的变换,就是一个等式递推而已
坐标变换公式
为什么过渡矩阵能和坐标变换公式扯上关系,这曾一度让我很费解
设 v ⃗ \vec v v是该线性空间(A基和B基所在的线性空间,假设为n维)中的一个向量,把A基记为 ( a ⃗ 1 , a ⃗ 2 , … , a ⃗ n ) (\vec a_1,\vec a_2,\dots,\vec a_n) (a1,a2,…,an),B基记为 ( b ⃗ 1 , b ⃗ 2 , … , b ⃗ n ) (\vec b_1,\vec b_2,\dots,\vec b_n) (b1,b2,…,bn),这种记法有助于理解坐标和线性组合的关系
v ⃗ \vec v v在A基下的坐标,也就是用A基(向量组)来线性表示 v ⃗ \vec v v时的系数们,用向量表示为 x ⃗ = ( x 1 x 2 ⋮ x n ) \vec x= \left( \begin{matrix} x_1\\ x_2\\ \vdots\\ x_n \end{matrix} \right) x=⎝⎜⎜⎜⎛x1x2⋮xn⎠⎟⎟⎟⎞
v ⃗ \vec v v在B基下的坐标,也就是用B基(向量组)来线性表示 v ⃗ \vec v v时的系数们,用向量表示为 y ⃗ = ( y 1 y 2 ⋮ y n ) \vec y= \left( \begin{matrix} y_1\\ y_2\\ \vdots\\ y_n \end{matrix} \right) y=⎝⎜⎜⎜⎛y1y2⋮yn⎠⎟⎟⎟⎞
通过
v
⃗
\vec v
v我们可以建立起
x
⃗
\vec x
x和
y
⃗
\vec y
y之间的关系,注意向量不同的横纵表示方法,这涉及矩阵乘法运算时的先后顺序
∵
v
⃗
=
A
x
⃗
a
n
d
v
⃗
=
B
y
⃗
∴
A
x
⃗
=
B
y
⃗
\because \vec v=A\vec x\quad and \quad \vec v=B\vec y \\ \therefore A\vec x=B\vec y
∵v=Axandv=By∴Ax=By
∵ B = A P ( 用 A 表 示 B , 过 渡 矩 阵 在 这 里 派 上 了 用 场 ) ∴ A x ⃗ = A P y ⃗ ∴ x ⃗ = P y ⃗ ∴ y ⃗ = P − 1 x ⃗ \because B=AP\,(用A表示B,过渡矩阵在这里派上了用场)\\ \therefore A\vec x=AP\vec y\\ \therefore \vec x=P\vec y\\ \therefore \vec y=P^{-1}\vec x ∵B=AP(用A表示B,过渡矩阵在这里派上了用场)∴Ax=APy∴x=Py∴y=P−1x
这也就推导出了不同基下的坐标变换公式。