题目
思路
观察样例一,可以发现 :
下标 | 1 | 2 | 3 |
---|---|---|---|
第1天 | a | b | c |
第2天 | a | b | |
第3天 | a | b | |
第4天 | a | ||
第5天 | a | ||
第6天 | a | ||
第7天 | a |
可以归纳出: 想要统计总共买了多少个物品,只需分别统计 :买到前1个物品的天数, 买到前2个物品的天数, …, 买到前i个物品的天数.
对于上面的表格:
买到前1个的天数是8, 买到前2个的天数是3, 买到前3个的天数是1. 所以总共是
7
+
3
+
1
=
11
7 + 3 + 1 = 11
7+3+1=11个.
假设用 k k k表示增加的价格(从第二天开始每天增加1), x x x表示每天拥有的钱
考虑买前1个,那么有 a 1 + k ≤ x a _1 + k \leq x a1+k≤x, 则 k ≤ x − a 1 k \leq x - a_1 k≤x−a1, 这意味着可以从第 0 0 0天到第 k = x − a 1 k = x - a_1 k=x−a1天可以买物品 a 1 a_1 a1, 所以天数 d = k + 1 = x − a 1 + 1 d = k + 1 = x - a_1 + 1 d=k+1=x−a1+1.
考虑买前2个, 那么有 a 1 + a 2 + 2 k ≤ x a _1 + a_2 + 2k \leq x a1+a2+2k≤x, 则 2 k ≤ x − ( a 1 + a 2 ) 2k \leq x - (a_1 + a_2) 2k≤x−(a1+a2), 这意味着可以从第 0 0 0天到第 k = x − ( a 1 + a 2 ) 2 k = \frac{x - (a_1 + a_2)}{2} k=2x−(a1+a2)天可以买物品 a 1 a_1 a1, 所以天数 d = k + 1 = x − ( a 1 + a 2 ) 2 + 1 d = k + 1 = \frac{x - (a_1 + a_2)}{2} + 1 d=k+1=2x−(a1+a2)+1.
考虑买前i个,那么有 ( ∑ j = 1 i a j ) + i k ≤ x \sum_{j = 1}^{i}{a _j}) + ik \leq x ∑j=1iaj)+ik≤x, 则 i k ≤ x − ( ∑ j = 1 i a j ) ik \leq x - (\sum_{j = 1}^{i}{a _j}) ik≤x−(∑j=1iaj), 这意味着可以从第 0 0 0天到第 k = x − ∑ j = 1 i a j i k = \frac{x - \sum_{j = 1}^{i}{a _j}}{i} k=ix−∑j=1iaj天可以买物品 a 1 a_1 a1, 所以天数: d = k + 1 = x − ∑ j = 1 i a j i + 1 d = k + 1 = \frac{x - \sum_{j = 1}^{i}{a _j}}{i} + 1 d=k+1=ix−∑j=1iaj+1.
注意:在计算开始前要将数组排序,优先考虑便宜的
实现
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2e5 + 10;
int n, x;
int a[N];
int main()
{
int T;
cin >> T;
while(T--)
{
cin >> n >> x;
for(int i = 1; i <= n; i ++) cin >> a[i];
sort(a + 1, a + 1 + n);
long long sum = 0, tol = 0;
for(int i = 1; i <= n; i ++)
{
tol += a[i];
if(x - tol >= 0) sum += (x - tol) / i + 1;
}
cout << sum << endl;
}
return 0;
}