不难。
最小割
点1到点n的所有最短路全都不连通
先floyd建出最短路图
最短路图
如果边(i,j),满足f[1][i]+t+f[j][n]=f[1][n],则其在最短路图上
对于最短路图上的每一条边,对应连一条容量为c的边
建边写错了!!!幸好及时发现,不然还又是一上午。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#define maxn 510
#define maxm 500010
#define inf 1000000000
using namespace std;
struct yts
{
int x,y,f,c;
}e[200010];
int head[maxn],to[maxm],c[maxm],next[maxm],q[maxn],d[maxn];
int f[maxn][maxn];
int num,n,m,s,t,ans;
void addedge(int x,int y,int z)
{
num++;to[num]=y;c[num]=z;next[num]=head[x];head[x]=num;
num++;to[num]=x;c[num]=0;next[num]=head[y];head[y]=num;
}
bool bfs()
{
memset(d,-1,sizeof(d));
int l=0,r=1;
q[1]=s;d[s]=0;
while (l<r)
{
int x=q[++l];
for (int p=head[x];p;p=next[p])
if (c[p] && d[to[p]]==-1)
{
d[to[p]]=d[x]+1;
q[++r]=to[p];
}
}
if (d[t]==-1) return 0; else return 1;
}
int find(int x,int low)
{
if (x==t || low==0) return low;
int totflow=0;
for (int p=head[x];p;p=next[p])
if (c[p] && d[to[p]]==d[x]+1)
{
int a=find(to[p],min(low,c[p]));
c[p]-=a;c[p^1]+=a;
low-=a;totflow+=a;
if (low==0) return totflow;
}
if (low) d[x]=-1;
return totflow;
}
void Dinic()
{
while (bfs()) ans+=find(s,inf);
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
f[i][j]=inf;
for (int i=1;i<=n;i++) f[i][i]=0;
for (int i=1;i<=m;i++)
{
int x,y,z,w;
scanf("%d%d%d%d",&x,&y,&z,&w);
f[x][y]=f[y][x]=min(f[x][y],z);
e[i].x=x;e[i].y=y;e[i].f=z;e[i].c=w;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
printf("%d\n",f[1][n]);
num=1;s=1;t=n;
for (int i=1;i<=m;i++)
{
int x=e[i].x,y=e[i].y,z=e[i].f,c=e[i].c;
if (f[1][x]+z+f[y][n]==f[1][n]) addedge(x,y,c);
if (f[1][y]+z+f[x][n]==f[1][n]) addedge(y,x,c);
}
Dinic();
printf("%d\n",ans);
return 0;
}