证明Azuma不等式和Hoeffding不等式
已知:
E ( X ) = 0 P { − α ≤ X ≤ β } = ∫ − α β p ( x ) d x = 1 f ( x ) 是 凸 函 数 E(X)=0 \\ P\{-\alpha \le X \le \beta \} = \int_{-\alpha}^\beta p(x) dx = 1 \\ f(x)是凸函数 E(X)=0P{
−α≤X≤β}=∫−αβp(x)dx=1f(x)是凸函数
假定: x x x是 − α -\alpha −α到 β \beta β之间的一点,可以表示为 x = γ ( − α ) + ( 1 − γ ) β x = \gamma (-\alpha) + (1-\gamma) \beta x=γ(−α)+(1−γ)β,其中 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ∈[0,1]。那么, γ = β − x α + β \gamma = \frac{\beta - x}{\alpha + \beta} γ=α+ββ−x。
由于 f ( x ) f(x) f(x)是凸函数,有
f ( x ) ≤ γ f ( − α ) + ( 1 − γ ) f ( β ) f(x) \le \gamma f(-\alpha) + (1-\gamma) f(\beta) f(x)≤γf(−α)+(1−γ)f(β)
所以
E [ f ( X ) ] = ∫ − α