证明Azuma不等式和Hoeffding不等式

本文详细证明了Azuma不等式和Hoeffding不等式,利用概率论中的数学原理,展示了一种利用凸函数性质推导不等式的方法。通过对随机变量X的期望值和分布进行分析,最终得出不等式并完成了证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

证明Azuma不等式和Hoeffding不等式

已知:
E ( X ) = 0 P { − α ≤ X ≤ β } = ∫ − α β p ( x ) d x = 1 f ( x ) 是 凸 函 数 E(X)=0 \\ P\{-\alpha \le X \le \beta \} = \int_{-\alpha}^\beta p(x) dx = 1 \\ f(x)是凸函数 E(X)=0P{ αXβ}=αβp(x)dx=1f(x)
假定: x x x − α -\alpha α β \beta β之间的一点,可以表示为 x = γ ( − α ) + ( 1 − γ ) β x = \gamma (-\alpha) + (1-\gamma) \beta x=γ(α)+(1γ)β,其中 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1]。那么, γ = β − x α + β \gamma = \frac{\beta - x}{\alpha + \beta} γ=α+ββx

由于 f ( x ) f(x) f(x)是凸函数,有
f ( x ) ≤ γ f ( − α ) + ( 1 − γ ) f ( β ) f(x) \le \gamma f(-\alpha) + (1-\gamma) f(\beta) f(x)γf(α)+(1γ)f(β)
所以
E [ f ( X ) ] = ∫ − α

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值