POJ3233解题报告

这篇博客介绍了一道ACM题目POJ3233的解题思路,重点讨论了矩阵快速幂在解决矩阵等比求和问题中的应用。文章强调了在矩阵快速幂运算中取模操作的时间消耗,并提供了两种优化方法:一是将矩阵视为单一元素,利用二分法和矩阵快速幂;二是利用分块矩阵,仅需一次矩阵快速幂运算,避免了二分步骤,提高了效率。
摘要由CSDN通过智能技术生成

Matrix Power Series
Time Limit: 3000MS Memory Limit: 131072K
Total Submissions: 16466 Accepted: 7012

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

Source

POJ Monthly--2007.06.03, Huang, Jinsong

           这道题是一道比较经典的矩阵快速幂运算的题目。在进行矩阵快速幂的过程中我们需要明确程序运行时间主要消耗在什么地方。其实在快速幂运算中最浪费时间的是取模运算。即在进行矩阵乘法时的取模运算很费时间。通过测试取模运算的处理会使得程序运行时间有10倍的差异。这一点是必须得注意的。为了防止超时,所以我们在做矩阵快速幂的题目时一定要注意在取模运算上多一些优化,防止超时。

       下面说这道题的解法,这道题是矩阵的等比求和,当然我们可以类比等比数列求和,直接利用公式求解。但是对于矩阵来说,这样会涉及到逆矩阵的计算,还有矩阵是否可逆的判断,比较麻烦,所以我们避开这种做法。比较好的方法有两种,一种是多项式处理的常见方法,即二分法对多项式的和进行处理。构造出来的递推式是n与n/2之间的递推关系式。这也说明了矩阵具有优化递推式的作用。使用矩阵处理递推关系也是很重要的方法。

      方法一:

      

           我们可以把一个矩阵看成一个元素,利用二分法+矩阵快速幂求出该矩阵的等比之和。

       参考代码:

       

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<ctime>
#include<cstdlib>
#include<iomanip>
#include<utility>
#define pb push_back
#define mp make_pair
#define CLR(x) memset(x,0,sizeof(x))
#define _CLR(x) memset(x,-1,sizeof(x))
#define REP(i,n) for(int i=0;i<n;i++)
#define Debug(x) cout<<#x<<"="<<x<<" "<<endl
#define REP(i,l,r) for(int i=l;i<=r;i++)
#define rep(i,l,r) for(int i=l;i<r;i++)
#define RREP(i,l,r) for(int i=l;i>=r;i--)
#define rrep(i,l,r) for(int i=1;i>r;i--)
#define read(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<11
using namespace std;
int n,k,m;
struct mat
{
    int d[30][30];
} A,E,M;

mat multi(mat &a,mat &b)
{
    mat ans;
    rep(i,0,n)
    {
        rep(j,0,n)
        {
            ans.d[i][j]=0;
            rep(k,0,n)
                ans.d[i][j]+=a.d[i][k]*b.d[k][j];
            ans.d[i][j]%=m;  //在循环外边取模这一步节省了10倍的时间,因为n最多是30,m又小于10^4,所以乘积不会超过10^8,所以乘积之和不会超过3*10^9,由于数据比较弱,所以这一层for循环求出的和可以保证在int范围内
        }
    }
    return ans;
}

mat add(mat &a,mat &b)
{
    mat ans;
    rep(i,0,n)
    {
        rep(j,0,n)
        {
            ans.d[i][j]=a.d[i][j]+b.d[i][j];
            ans.d[i][j]%=m;
        }
    }
    return ans;
}

mat quickmulti(int n)
{
    mat p=E,q=A;
    if(n==0) return p;
    if(n==1) return A;
    while(n!=1)
    {
        if(n&1)
        {
            n--;
            p=multi(p,q);
        }
        else
        {
            n>>=1;
            q=multi(q,q);
        }
    }
    return multi(p,q);
}

mat binarymulti(int k)
{
    if(k==1) return A;
    mat p=binarymulti(k/2),tmp,q;
    if(k&1)          //k为奇数时sum(k)=(1+A^(k/2+1))*sum(k/2)+A^(k/2+1);
    {
        tmp=quickmulti(k/2+1);
        q=multi(tmp,p);
        p=add(p,q);
        p=add(p,tmp);
    }
    else            //k为偶数时sum(k)=(1+A^(k/2))*sum(k/2)
    {
        tmp=quickmulti(k/2);
        q=multi(tmp,p);
        p=add(p,q);
    }
    return p;
}

int main()
{
    scanf("%d%d%d",&n,&k,&m);
    rep(i,0,n)
        rep(j,0,n)
        {
            read(A.d[i][j]);
            A.d[i][j]%=m;   //这是比较关键的一步。题目中m的范围很小,所以提前取模,在矩阵乘法时取模次数就可以减少,防止溢出
            E.d[i][j]=(i==j);
        }
    M=binarymulti(k);
    rep(i,0,n)
    {
        rep(j,0,n)
            printf("%d ",M.d[i][j]);
        printf("\n");
    }
}


          方法二:

          利用好分块矩阵的性质,构造矩阵。只用一次矩阵快速幂。省掉了方法一中的二分多项式的步骤,使得运算速度有了很大提高。

         

          这个方法中需要用到分块矩阵,这样会有些麻烦。矩阵中套矩阵。不过速度比第一种方法要快一些。

          参考代码:

          

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<ctime>
#include<cstdlib>
#include<iomanip>
#include<utility>
#define pb push_back
#define mp make_pair
#define CLR(x) memset(x,0,sizeof(x))
#define _CLR(x) memset(x,-1,sizeof(x))
#define REP(i,n) for(int i=0;i<n;i++)
#define Debug(x) cout<<#x<<"="<<x<<" "<<endl
#define REP(i,l,r) for(int i=l;i<=r;i++)
#define rep(i,l,r) for(int i=l;i<r;i++)
#define RREP(i,l,r) for(int i=l;i>=r;i--)
#define rrep(i,l,r) for(int i=1;i>r;i--)
#define read(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<11
using namespace std;
int n,k,M;
struct mat
{
    int d[30][30];
};
struct Mat
{
    mat m[2][2];
} A,E;

mat add(mat &a,mat &b)
{
    mat ans;
    rep(i,0,n)
    {
        rep(j,0,n)
            ans.d[i][j]=(a.d[i][j]+b.d[i][j])%M;
    }
    return ans;
}

mat multi(mat &a,mat &b)
{
    mat ans;
    rep(i,0,n)
    {
        rep(j,0,n)
        {
            ans.d[i][j]=0;
            rep(k,0,n)
            {
                if(a.d[i][k]&&b.d[k][j])
                    ans.d[i][j]+=a.d[i][k]*b.d[k][j];
            }
            ans.d[i][j]%=M;
        }
    }
    return ans;
}

Mat Multi(Mat &a,Mat &b)
{
    Mat p;
    CLR(p.m);
    rep(i,0,2)
    {
        rep(j,0,2)
        {
            rep(k,0,2)
            {
                mat q=multi(a.m[i][k],b.m[k][j]);
                p.m[i][j]=add(p.m[i][j],q);
            }
        }
    }
    return p;
}

Mat quickmulti(int n)
{
    Mat p=E,q=A;
    if(n==0) return p;
    if(n==1) return A;
    while(n)
    {
        if(n&1)
        {
            n--;
            p=Multi(p,q);
        }
        else
        {
            n>>=1;
            q=Multi(q,q);
        }
    }
    return p;
}

int main()
{
    CLR(E.m);
    rep(i,0,2)
        rep(j,0,30)
    E.m[i][i].d[j][j]=1;
    scanf("%d%d%d",&n,&k,&M);
    rep(i,0,30)
        A.m[0][0].d[i][i]=1;
    rep(i,0,n)
    {
        rep(j,0,n)
        {
            read(A.m[0][1].d[i][j]);
            A.m[0][1].d[i][j]%=M;
            A.m[1][1].d[i][j]=A.m[0][1].d[i][j];
        }
    }
    Mat m1=quickmulti(k);
    rep(i,0,n)
    {
        rep(j,0,n)
            printf("%d ",m1.m[0][1].d[i][j]);
        printf("\n");
    }
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ1753题目为"Flip Game",题目给出了一个4x4的棋盘,每个格子有黑色或白色,每次翻转一个格子会同时翻转它上下左右四个格子的颜色,目标是把整个棋盘都变为同一种颜色,求把棋盘变成同种颜色的最小步数。 解题思路: 一般关于棋盘变色的题目,可以考虑使用搜索来解决。对于POJ1753题目,可以使用广度优先搜索(BFS)来解决。 首先,对于每个格子,定义一个状态,0表示当前格子是白色,1表示当前格子是黑色。 然后,我们可以把棋盘抽象成一个长度为16的二进制数,将所有格子的状态按照从左往右,从上往下的顺序排列,就可以用一个16位的二进制数表示整个棋盘的状态。例如,一个棋盘状态为: 0101 1010 0101 1010 则按照从左往右,从上往下的顺序把所有格子的状态连接起来,即可得到该棋盘的状态为"0101101001011010"。 接着,我们可以使用队列来实现广度优先搜索。首先将初始状态加入队列中,然后对于队列中的每一个状态,我们都尝试将棋盘上的每个格子翻转一次,生成一个新状态,将新状态加入队列中。对于每一个新状态,我们也需要记录它是从哪个状态翻转得到的,以便在得到最终状态时能够输出路径。 在搜索过程中,我们需要维护每个状态离初始状态的步数,即将该状态转换为最终状态需要的最小步数。如果我们找到了最终状态,就可以输出答案,即最小步数。 代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值