Fisher's linear discriminant(Linear Discriminant Analysis)

Fisher's Linear Discriminant (LDA)是一种用于分类的方法,它通过将高维数据投影到一维来最大化类间方差和最小化类内方差,从而提高分类效果。与PCA不同,LDA关注的是区分类别,而非单纯寻找最大方差。LDA的目标是找到最佳投影方向,使得类别能够最大程度地分离。在两类问题中,LDA通过计算类间和类内方差来确定投影向量,并且可以扩展到多类情况。
摘要由CSDN通过智能技术生成


Fisher's linear discriminant的主要思想是(简单起见这里先讨论分成2类的情况)将高维的数据投影到一维,在这一维上,我们就能轻易得到分类。

以下两幅图分别来自prml 和the elements,我觉得非常好的说明了在分成两类的情况下Fisher's linear discriminant的思想(左图的投影没有右图的好):




Fisher's linear discriminant之所以类内方差和类间方差的要求,是因为,单单要求方差大,并不是一个很好的目标,例如会有如下的样本:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值