Fisher's linear discriminant的主要思想是(简单起见这里先讨论分成2类的情况)将高维的数据投影到一维,在这一维上,我们就能轻易得到分类。
以下两幅图分别来自prml 和the elements,我觉得非常好的说明了在分成两类的情况下Fisher's linear discriminant的思想(左图的投影没有右图的好):
Fisher's linear discriminant之所以类内方差和类间方差的要求,是因为,单单要求方差大,并不是一个很好的目标,例如会有如下的样本: