1 机器学习中的建模
1.1 描述性建模
以方便的形式给出数据的主要特征,实质上是对数据的概括,以便在大量的或有噪声的数据中仍能观察到重要特征。重在认识数据的主要概貌,理解数据的重要特征。
- Task:聚类分析,数据降维,流形学习,密度估计,异常分析,可视化
1.2 预测性建模
以函数的形式给出感兴趣量(预测量)与可观测量之间的数量关系,实质上是根据观测到的对象特征来预测对象的其他特征。重在把握协变关系,据此进行预测。
- Task:分类(类别预测),回归(数值预测),评分(排名预测)
1.2.1 预测性建模方法
概率方法:生成式建模方法,借助训练数据对同类数据的生成机制(概率分布)进行估计,基于概率关系对变量取值进行概率预测。把模式视为随机变量的抽样,利用统计决策理论(贝叶斯统计)成熟的判决准则与方法,对模式样本进行分类
如:贝叶斯分类器、贝叶斯网络(概率图模型)、高斯混合模型、隐马尔可夫模型、受限玻尔兹曼机、生成对抗网络,变分自动编码器
代数方法:判别式建模方法,借助训练数据对观测量和预测量的函数关系进行直接建模,基于函数关系对变量取值进行数值预测。利用向量空间的直观概念,使用代数方程方法,对模式进行分类
如:KNN,感知机,判别分析,决策树,随机森林,支持向量机、逻辑回归,神经网络
1.3 判别函数
1.3.1 线性可分概念与线性分类算法
一个分类问题是否属于线性可分,取决于是否有可能找到一个点、直线、平面或超平面来分离开两个相邻的类别。如果每个类别样本的分布范围本身是全连通的单一凸集,且互不重叠,则这两个类别一定是线性可分的,如图所示。线性分类算法主要有线性判别函数、Fisher判别分析、单层感知器、逻辑回归等
1.3.2 判别函数的定义
直接用来对模式进行分类的决策函数,若分属于ω1,ω2两类的n维模式在空间中的分布区域,可以用一代数方程d(X) =0决定的超平面作为分隔面,两类样本分布在分隔面的两侧,那么就称d(X)为判别函数(discriminant function)或称决策函数(decisionfunction)。代数方程d(X) =0表示的是n维空间的(n-1)维判决面 {或超平面(hyperplane)或超曲面(hypersurface) ,视d(x)形式而定}。
Note:这里的模式或许可以直接理解成数学里的自变量。
为了清晰地了解d(x)的含义,应该画出判别函数值d(x)这一轴,在没有画出的时候,就在自变量(模式)空间中画出d(x)取正负值的区域——这就是所谓判别面的正侧、负侧。