HDU 1452 Happy 2004(因子和)

/*************************************************************
 计算 2004^X的因子和 s(2004^X)   mod M, M=29

  s(2004^X)%29
  因子和 s是积性函数,即 :gcd(a,b)=1==> s(a*b)= s(a)*s(b)

  2004^X=4^X * 3^X *167^X
  s(2004^X)=  s(2^(2X))* s(3^X) * s(167^X)

  如果 p是素数 ==> s(p^X)=1+p+p^2++p^X = (p^(X+1)-1) /(p-1)

  s(2004^X)=(2^(2X+1)-1)* (3^(X+1)-1)/2  *(167^(X+1)-1)/166

  167%29=22

  s(2004^X)=(2^(2X+1)-1)* (3^(X+1)-1)/2  *(22^(X+1)-1)/21

  (a*b)/c %M= a%M* b%M  * inv(c)

  c*inv(c)=1 %M    模为1的所有数  inv(c)为最小可以被c整除的

    inv(2)=15,  inv(21)=18    2*15=1 mod 29, 18*21=1 mod 29

  s(2004^X)=(2^(2X+1)-1)* (3^(X+1)-1)/2  *(22^(X+1)-1)/21
           =(2^(2X+1)-1)* (3^(X+1)-1)*15 *(22^(X+1)-1)*18
***************************************************************/

//hdu 1452
#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;

int _pow( int a, int n )
{
    int b = 1;
    while( n > 1 )
        if( n % 2 == 0 )
        {
            a = ( a * a ) % 29;
            n /= 2;
        }
        else
        {
            b = b * a % 29;
            n--;
        }
        return a * b % 29;
}
int main()
{
    int X;
    int a, b, c;
    while( cin >> X, X )
    {
        a = _pow( 2, 2 * X + 1 );
        b = _pow( 3, ( X + 1 ) );
        c = _pow( 22, ( X + 1 ) );

        cout << ( a - 1 ) * ( b - 1 ) * 15 * ( c - 1 ) * 18 % 29 << endl;
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>