这里介绍两种算法,第一种比较容易理解
下面是Cocos2dx中实现Ray-AABB相交(碰撞)检测的算法,说明看注释
bool Ray::intersects(const AABB& aabb) const
{
Vec3 ptOnPlane; //射线与包围盒某面的交点
Vec3 min = aabb._min; //aabb包围盒最小点坐标
Vec3 max = aabb._max; //aabb包围盒最大点坐标
const Vec3& origin = _origin; //射线起始点
const Vec3& dir = _direction; //方向矢量
float t;
//分别判断射线与各面的相交情况
//判断射线与包围盒x轴方向的面是否有交点
if (dir.x != 0.f) //射线x轴方向分量不为0 若射线方向矢量的x轴分量为0,射线不可能经过包围盒朝x轴方向的两个面
{
/*
使用射线与平面相交的公式求交点
*/
if (dir.x > 0)//若射线沿x轴正方向偏移
t = (min.x - origin.x) / dir.x;
else //射线沿x轴负方向偏移
t = (max.x - origin.x) / dir.x;
if (t > 0.f) //t>0时则射线与平面相交
{
ptOnPlane = origin + t * dir; //计算交点坐标
//判断交点是否在当前面内
if (min.y < ptOnPlane.y && ptOnPlane.y < max.y && min.z < ptOnPlane.z && ptOnPlane.z < max.z)
{
return true; //射线与包围盒有交点
}
}
}
//若射线沿y轴方向有分量 判断是否与包围盒y轴方向有交点
if (dir.y != 0.f)
{
if (dir.y > 0)
t = (min.y - origin.y) / dir.y;
else
t = (max.y - origin.y) / dir.y;
if (t > 0.f)
{
ptOnPlane = origin + t * dir;
if (min.z < ptOnPlane.z && ptOnPlane.z < max.z && min.x < ptOnPlane.x && ptOnPlane.x < max.x)
{
return true;
}
}
}
//若射线沿z轴方向有分量 判断是否与包围盒y轴方向有交点
if (dir.z != 0.f)
{
if (dir.z > 0)
t = (min.z - origin.z) / dir.z;
else
t = (max.z - origin.z) / dir.z;
if (t > 0.f)
{
ptOnPlane = origin + t * dir;
if (min.x < ptOnPlane.x && ptOnPlane.x < max.x && min.y < ptOnPlane.y && ptOnPlane.y < max.y)
{
return true;
}
}
}
return false;
}
下面是另外一种Ray-AABB检测算法,称为"Slabs method"
观察上述三幅图可以得出,只要发生区间交叠,光线与平面就能相交,
那么区间交叠出现的条件便是:光线进入平面处的最大t值小于光线离开平面处的最小t值
那么问题就变成了如何求 光线进入平面处的最大t值 以及 光线离开平面处的最小t值
这个问题很简单,通过光线与平面相交的参数方程求解就可以了,
光线的参数方程为R(t) = O + t * Dir
一般平面方程为aX+bY+cZ+d=0,因为AABB的六个面分别平行于XY、XZ、YZ平面,所以平面的方程为X=d,Y=d,Z=d
光线与垂直于x轴的两个面相交时,t = (d - O.x) / Dir.x
光线与垂直于y轴的两个面相交时,t = (d - O.y) / Dir.y
光线与垂直于z轴的两个面相交时,t = (d - O.z) / Dir.z
注意到t<0时,交点位于光线的起点之后,则光线(射线)并未与盒体发生相交
bool BBox::hit(const Ray& ray) const
{
double ox = ray.o.x;double oy = ray.o.y;double oz = ray.o.z;
double dx = ray.d.x;double dy = ray.d.y;double dz = ray.d.z;
double tx_min,ty_min,tz_min;
double tx_max,ty_max,tz_max;
//x0,y0,z0为包围体的最小顶点
//x1,y1,z1为包围体的最大顶点
if(abs(dx) < 0.000001f)
{
//若射线方向矢量的x轴分量为0且原点不在盒体内
if(ox < x1 || ox > x0)
return false ;
}
else
{
if(dx>=0)
{
tx_min = (x0-ox)/dx;
tx_max = (x1-ox)/dx;
}
else
{
tx_min = (x1-ox)/dx;
tx_max = (x0-ox)/dx;
}
}
if(abs(dy) < 0.000001f)
{
//若射线方向矢量的x轴分量为0且原点不在盒体内
if(oy < y1 || oy > y0)
return false ;
}
else
{
if(dy>=0)
{
ty_min = (y0-oy)/dy;
ty_max = (y1-oy)/dy;
}
else
{
ty_min = (y1-oy)/dy;
ty_max = (y0-oy)/dy;
}
}
if(abs(dz) < 0.000001f)
{
//若射线方向矢量的x轴分量为0且原点不在盒体内
if(oz < z1 || oz > z0)
return false ;
}
else
{
if(dz>=0)
{
tz_min = (z0-oz)/dz;
tz_max = (z1-oz)/dz;
}
else
{
tz_min = (z1-oz)/dz;
tz_max = (z0-oz)/dz;
}
}
double t0,t1;
//光线进入平面处(最靠近的平面)的最大t值
t0=max(tz_min,max(tx_min,ty_min));
//光线离开平面处(最远离的平面)的最小t值
t1=min(tz_max,min(tx_max,ty_max));
return t0<t1;
}