Send a Table


When participating in programming contests, you sometimes face the following problem: You know how to calcutale the output for the given input values, but your algorithm is way too slow to ever pass the time limit. However hard you try, you just can't discover the proper break-off conditions that would bring down the number of iterations to within acceptable limits.

Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half an hour and produce a table of answers for all possible input values, encode this table into a program, submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating, but remember: In love and programming contests everything is permitted).

Faced with this problem during one programming contest, Jimmy decided to apply such a 'technique'. But however hard he tried, he wasn't able to squeeze all his pre-calculated values into a program small enough to pass the judge. The situation looked hopeless, until he discovered the following property regarding the answers: the answers where calculated from two integers, but whenever the two input values had a common factor, the answer could be easily derived from the answer for which the input values were divided by that factor. To put it in other words:

Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range [1, N].  When he knows Answer(x, y), he can easily derive Answer(k*x, k*y), where k is any integer from it by applying some simple calculations involving Answer(x, y) and k. For example if N=4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2), Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric, so Answer(3, 2) can not be derived from Answer(2, 3).

Now what we want you to do is: for any values of N from 1 upto and including 50000, give the number of function Jimmy has to pre-calculate.

Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which indicates the value of N. Input is terminated by a line which contains a zero. This line should not be processed.

 

Output

For each line of input produce one line of output. This line contains an integer  which indicates how many values Jimmy has to pre-calculate for a certain value of N.


Sample Input          

2

5

0                    

Output for Sample Input

3
9

题意:输入一个数n,求1~n,每个互质的数有多少个 (互质:即两数最大的公约数为1)

欧拉定理就是求一个数的互质数有多少个;ans=n*(1-1/p1)*(1-1/p1)*(1-1/p2)……*(1-1/pi);其中pi都是n 的约数;

#include<iostream>
#include<cstring>
using namespace std;
#define M 50005
int phi[M];
void fun()
{
   int i,j;
   for(i=2;i<M;i++)
   {
     if(phi[i]==0)
		for(j=i;j<M;j+=i)
		{
			if(phi[j]==0)  phi[j]=j;
			   phi[j]=phi[j]/i*(i-1);
		}
   } 
}
int main()
{
int n,i,sum,c;
memset( phi,0,sizeof( phi));
phi[1]=1;
fun();
while(cin>>n)
{
	if(n==0) break;
	sum=0;
  for(i=1;i<=n;i++)
     sum+=phi[i];
  cout<<2*sum-1<<endl;
}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值