Tensorflow初学值MINIST数据

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u012418573/article/details/82492089

本人是在anaconda下的tensorflow中做的实验:

在写代码时(.py脚本)应该写成:

#!/home/zzm/usr/anaconda2/envs/tf-py2/bin/python
# -*- encoding:UTF-8 -*-

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

开始时直接写成:

#!/home/zzm/usr/anaconda2/bin/python

出现错误:ImportError: No module named tensorflow.examples.tutorials.mnist

可以用命令查看python是在哪个环境下的:

# witch python
/home/zzm/usr/anaconda2/envs/tf-py2/bin/python

可见在tf-py2这个环境下,该目录“/home/zzm/usr/anaconda2/envs/tf-py2/bin/python”下的python可用,而“/home/zzm/usr/anaconda2/bin/python”是全局环境下可用的python,因此要区分开来。

为了用 python 实现高效的数值计算,我们通常会使用函数库,比如 NumPy,会把类似矩阵乘法这样的复杂运算使用其他外部语言实现。不幸的是,从外部计算切换回 Python 的每一个操作,仍然是一个很大的开销。如果你用 GPU 来进行外部计算,这样的开销会更大。用分布式的计算方式,也会花费更多的资源用来传输数据。

TensorFlow 也把复杂的计算放在 python 之外完成,但是为了避免前面说的那些开销,它做了进一步完善。Tensorflow 不单独地运行单一的复杂计算,而是让我们可以先用图描述一系列可交互的计算操作,然后全部一起在 Python 之外运行。(这样类似的运行方式,可以在不少的机器学习库中看到。)

小知识:
用argparse模块让python脚本接收参数时,对于True/False类型的参数,向add_argument方法中加入参数action=’store_true’/’store_false’。
顾名思义,store_true就代表着一旦有这个参数,做出动作“将其值标为True”,也就是没有时,默认状态下其值为False。反之亦然,store_false也就是默认为True,一旦命令中有此参数,其值则变为False。在使用参数时,直接加入该参数,并不需要对该参数赋值。

展开阅读全文

没有更多推荐了,返回首页