【机器学习】【隐马尔可夫模型-1】基本概念+观测序列的生成算法+示例讲解

本文通过一个游戏实例介绍隐马尔可夫模型(HMM)。游戏涉及5个盒子,每个盒子含红白两种颜色的球,按照特定规则抽取和转移。HMM定义了状态序列(盒子顺序)和观测序列(球颜色)的关系,其中状态序列不可见,观测序列可见。文章阐述了HMM的基本概念,包括状态集合、观测集合、初始状态概率、状态转移概率和观测概率,并讨论了HMM的三个基本问题:概率计算、学习和预测。
摘要由CSDN通过智能技术生成

从例子开始学隐马尔可夫模型,是一个较为简单的学习方法。

1.啥也不说,先看个例子

我面前有个桌子,桌子上有5个外观一模一样的盒子,按照一排摆放,每个盒子里面都装有10个形状大小一模一样的圆球,每个球只能是红色或者白色,下面是每个盒子装有球的信息.

1.1盒子信息

    

轻松得到如下信息:

    盒子集合={盒子1,盒子2,盒子3,盒子4,盒子5}

    球颜色集合={白色,红色}

    从每个盒子当中随机取出一个球,是红球和白球的概率为:

     

现在,我们开始做个游戏:从这些盒子里面取n次球,每次随机取1个球并记录球的颜色,然后再将球放入原来所在盒子,再按照给定规则从后续的盒子重复上述动作,直到取够n次球。

给定规则由1.2当前盒子到下个盒子的规则给出。

1.2当前盒子到下个盒子的规则

我给游戏定了一个规则:

    假如当前从盒子1里面取1个球,则下次必须从盒子2里面取1个球;

    假如当前从盒子2里面取1个球,则下次以0.6的概率从其左边盒子里面取1个球,以0.4的概率从其右边盒子里面取1个球;

    假如当前从盒子3里面取1个球,则下次以0.4的概率从其左边盒子里面取1个球,以0.6的概率从其右边盒子里面取1个球;

    假如当前从盒子4里面取1个球,则下次以0.5的概率从盒子2里面取1个球,以0.5个概率从盒子5里面取1个球;

    假如当前从盒子5里面取1个球,则下次以0.3的概率从盒子1里面取1个球,以0.7的概率从盒子3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值