【机器学习】【朴素贝叶斯-1】Naïve Bayes算法详解+样本集实例计算过程详解

本文介绍了朴素贝叶斯算法的基本原理,通过数学公式和相亲样本数据集进行了详细解释。利用贝叶斯公式,计算了样本在不同标签值条件下的概率,展示了如何在Python中进行向量化实现,以提高处理大规模数据的效率。
摘要由CSDN通过智能技术生成

1.朴素贝叶斯算法简介

最前面的一句话:朴素贝叶斯算法基于贝叶斯公式和样本的每个特征之间是相互独立的。

1.1数学中理解

数学基础是贝叶斯公式:


可以这么理解这个公式:如果知道A和B事件的单独发生概率,只要知道了以下任意一个事件的概率,就可以求出来另外一个事件的发生概率:

1)发生事件A的前提下,发生事件B的概率,即P(B|A)

2)发生事件B的前提下,发生事件A的概率,即P(A|B)

1.2样本数据集中理解

使用以下相亲样本数据集来讲解朴素贝叶斯算法,假设有以下相亲样本数据集:

    features=['looks', 'credit', 'height', 'education']
    #特征looks(相貌)的特征值范围 'nice', 'ugly'
    #特征credit(名声)的特征值范围 'bad', 'good'
    #特征height(身高)的特征值范围'S','H','M',S代表Short, H代表High, M代表Middle
    #特征education(学历)的特征值范围'low','high'
    #特征值=['nice','ugly','bad','good','S','H','M','low','high']
    #标签取值范围['yes','no'], yes表示女生接受男生,no表示女生不接受男生
    samples=[['nice', 'bad',  'S', 'low',  'no'],
             ['ugly', 'good', 'S', 'high', 'no'],
             ['nice', 'good', 'S', 'high', 'yes'],
             ['ugly', 'good', 'H', 'high', 'yes'],
             ['nice', 'bad',  'S', 'high', 'no'],
             ['nice', 'bad',  'S', 'high', 'no'],
             ['nice', 'good', 'H', 'low',  'yes'],
             ['ugly', 'good', 'M', 'high', 'yes'],
             ['nice', 'good', 'M', 'high', 'yes'],
             ['ugly', 'bad',  'H', 'high', 'yes'],
             ['nice', 'good', 'S', 'low',  'no'],
             ['nice', 'good', 'S', 'low',  'no']]

上面是贝

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值