最近学习SparkSql时接触了SparkSession。SparkSession是Spark 2.0引如的新概念。SparkSession为用户提供了统一的切入点,来让用户学习spark的各项功能。
在spark的早期版本中,SparkContext是spark的主要切入点,由于RDD是主要的API,我们通过sparkcontext来创建和操作RDD。对于每个其他的API,我们需要使用不同的context。例如,对于Streming,我们需要使用StreamingContext;对于sql,使用sqlContext;对于hive,使用hiveContext。但是随着DataSet和DataFrame的API逐渐成为标准的API,就需要为他们建立接入点。所以在spark2.0中,引入SparkSession作为DataSet和DataFrame API的切入点,SparkSession封装了SparkConf、SparkContext和SQLContext。为了向后兼容,SQLContext和HiveContext也被保存下来。
创建SparkSession
我们可以使用builder模式来创建SparkSession。如果SparkContext已经存在,SparkSession就会重用它;如果不存在,Spark就会创建一个新的SparkContext。在每一个JVM中只能有一个SparkContext,但是在一个Spark程序中可以有多个SparkSession。
SparkSession spark = SparkSession.builder()
.master("yourmaster