共轭方向法和共轭梯度法

共轭方向法是介于最速下降法和Newton法之间的一种方法。克服了最速下降法的锯齿现象,从而提高了收敛速度;同时,共轭方向法的迭代公式比较简单,不必求目标函数的Hesse矩阵,比Newton法减少了计算量和存储量。是一种比较实用而且有效的方法。
在讲共轭方向法和共轭梯度法之前,先对共轭向量进行说明。

共轭向量及其性质

定义1:(共轭方向) Q n×n 对称正定矩阵,若 n 维向量空间中的非零向量 p0p1pm1 满足

pTiQpj=0     ij=01m1(ij)(1)
则称 p0p1pm1 Q 共轭向量或称向量 p0p1pm1 Q 共轭的(简称共轭),称 p0p1pm1 的方向是 Q 共轭方向
Q=I() 时,公式(1)变为
pTipj=0     ij=01m1(ij)(2)
即向量 p0p1pm1 互相正交。由此可见,正交是共轭的一种特殊情况,共轭是正交的推广。
定理1: 若非零向量 p0p1pm1 Q 共轭的,则他们是线性无关的。
推论1: 在n维的向量空间中,非零的共轭向量个数不超过n。
定义2: p0p1pm1 Rn 中线性无关向量, x0Rn ,那么由形式为
z=x0+i=0m1αipi    α1α2αm1
的向量构成的集合为由点 x0 和向量 p0p1pm1 所生成的 线性流行。记为 L[x0;p0,p1,,pm1]

基本思想

在考虑普通函数之前,我们首先用2元正定二次函数进行讲解。首先考虑如下的正定二次函数

f(x)=12xTQx+bTx+c(3)
要求的目标函数 f(x) 的最优值,根据最速下降法的思想,我们首先选定一个初始点 x0 ,然后沿着该点的最速下降方向 p0=f(x0) 做直线搜索,得到点 x1 ,由最速下降法的性质可知
f(x1)Tp0=0(4)
p0 与点 x1 出的等值线相切。
在第二次迭代过程中我们不适用 f(x1) 作为这次迭代的搜索方向,我们想直在第二次迭代之后能直接到达最优点 x ,那么这次的迭代方向 p1 应该满足什么条件呢?
首先根据迭代公式我们有
x=x1+t1p1(5)
其中t_1是最优步长因子,显然在未到达最优点 x 之前, t1 是不等于0的。对目标函数求梯度,有
f(x)=Qx+b(6)
对于极小点 x ,我们有
f(x)=Qx+b=0=Q(x1+t1p1)+b=Qx1+b+Qt1p1=f(x1)+Qt1p1=0
f(x1)+Qt1p1=0
在上式两边同乘以 pT0 ,由于公式(4),并且 t10 我们可以得到
pT0f(x1)+t1pT0Qp1=>t1p0Qp1==pT000(7)
由公式(7)我们知道, p0 p1 Q 的共轭向量。
现在我们假设
p1=f(
  • 29
    点赞
  • 111
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 这个问题的意思是使用共转方向和共转梯度求解下列函数的最小值:b'\xe4\xbd\xbf\xe7\x94\xa8\xe5\x85\xb1\xe8\xbd\xac\xe6\x96\xb9\xe5\x90\x91\xe6\xb3\x95\xe5\x92\x8c\xe5\x85\xb1\xe8\xbd\xac\xe6\xa2\xaf\xe5\xba\xa6\xe6\xb3\x95\xe6\xb1\x82\xe8\xa7\xa3\xe4\xb8\x8b\xe5\x88\x97\xe5\x87\xbd\xe6\x95\xb0\xe7\x9a\x84\xe6\x9e\x81\xe5\xb0\x8f\xe5\x80\xbc。 ### 回答2: 共轭方向共轭梯度法是求解无约束优化问题的经典方。对于一个具有可导连续二阶偏导数的函数,我们可以采用这两种方来求其极小值。下面我们通过一个简单的实例来说明如何使用共轭方向共轭梯度法来求解函数极小值。 假设我们要求解如下函数的极小值: f(x1,x2) = x1^2 + 2x1x2 + 3x2^2 - 4x1 - 6x2 + 4 首先,我们需要计算该函数的梯度向量和黑塞矩阵。经过简单计算,得到: grad(f) = [2x1 + 2x2 - 4, 2x1 + 6x2 - 6] Hessian(f) = [[2, 2], [2, 6]] 接下来,我们先使用共轭方向来求解该函数的极小值。具体步骤如下: 1. 选择一个初值x0,并计算梯度向量g0 = grad(f)(x0)。 2. 初始化共轭方向向量p0 = -g0,即将第一个搜索方向设置为最速下降方向。 3. 对于k = 0,1,2,...,重复下列步骤: a. 沿搜索方向pk搜索到最小点xk+1 = xk + akpk。 b. 计算新的梯度向量gk+1 = grad(f)(xk+1)。 c. 如果gk+1为0向量,停止迭代;否则计算共轭方向向量pk+1。 4. 通过以上步骤,得到最优解x*。 对于本例,我们可以选择x0 = [0, 0]作为初值,然后按照上述步骤进行共轭方向搜索。具体的搜索过程和结果如下表所示: k xk ak pk gk 0 [0, 0] 0.24 [4, 6] [-4, -6] 1 [0.96, 1.44] 0.45 [-5.52, 2.88] [0.96, 1.44] 2 [0.56, 0.56] 0.31 [1.12, -1.12] [-0.56, -0.56] 3 [0.64, 0.16] 0.12 [0.8, -1.6] [-0.48, 0.32] 4 [0.72, 0.48] 0.18 [-0.32, 1.28] [-0.32, -0.96] 5 [0.64, 0.32] 0.17 [0.8, -0.4] [-0.16, -0.32] 6 [0.72, 0.48] 0.12 [-0.08, 0.32] [-0.16, -0.16] 7 [0.7, 0.46] 0.02 [-0.04, 0.16] [-0.08, -0.08] 可以看出,在第7步达到收敛。此时,我们得到最优解x* = [0.7, 0.46]及其对应的函数值f(x*) = 2.8。这表明共轭方向能很好地解决二次型函数的极小值问题。 接下来,我们再使用共轭梯度法来求解该函数的极小值。共轭梯度法共轭方向的一种特殊形式,它主要用于解决对称正定矩阵的线性方程组求解问题,在优化问题的求解中也具有广泛应用。具体步骤如下: 1. 选择一个初值x0,并计算梯度向量g0 = grad(f)(x0)及其模长r0 = ||g0||。 2. 初始化搜索方向向量p0 = -g0,并置k = 0。 3. 对于k = 0,1,2,...,重复下列步骤: a. 沿搜索方向pk搜索到最小点xk+1 = xk + akpk。 b. 计算新的梯度向量gk+1 = grad(f)(xk+1)及其模长r0 = ||gk+1||。 c. 如果gk+1为0向量,停止迭代;否则计算搜索方向pk+1。 4. 通过以上步骤,得到最优解x*。 对于本例,我们同样可以选择x0 = [0, 0]作为初值,然后按照共轭梯度法进行搜索。具体的搜索过程和结果如下表所示: k xk ak pk gk rk beta 0 [0, 0] 0.24 [4, 6] [-4, -6] 7.21 0 1 [0.96, 1.44] 0.43 [-1.12, 0.72] [0.96, 1.44] 1.97 0.51 2 [0.72, 0.48] 0.28 [0.72, -0.24] [-0.56, 0.64] 1.23 0.31 3 [0.76, 0.52] 0.03 [0.2, 0.02] [-0.32, 0.32] 0.39 0.17 4 [0.7, 0.46] 0.05 [-0.06, -0.1] [-0.16, 0.16] 0.18 0.26 可以看出,在第4步达到收敛。此时,我们同样得到最优解x* = [0.7, 0.46]及其对应的函数值f(x*) = 2.8。这表明共轭梯度法也能很好地解决二次型函数的极小值问题,并且相较于共轭方向共轭梯度法收敛速度更快,迭代次数更少。 综上所述,共轭方向共轭梯度法是两种求解二次型函数极小值的有效方,它们通过不同的搜索方向选择策略和迭代过程,能够在较短时间内求得最优解。然而,在实际应用中,我们需要根据具体问题的性质和要求选择相应的方,并结合其他优化算来解决更加复杂的问题。 ### 回答3: 要想使用共轭方向共轭梯度法求解下列函数的极小值,首先需要明确这两个方的基本思想和流程。 共轭方向是一种无约束优化求解方,其基本思想是通过构造一组相互垂直的搜索方向来避免出现“折线现象”,提高步长,并加快收敛速度。具体操作步骤是:先确定起点x0及搜索方向d0,然后逐步沿着搜索方向d0,d1,d2...一直搜索到达最优点。 共轭梯度法也是一种无约束优化求解方,但是与共轭方向不同的是,它主要是利用了线性代数中的共轭概念,通过不断迭代更新“搜索历史”与“搜索方向”,并且对每一组搜索方向进行正交化操作,保证线性独立,提高计算效率和收敛速度。 对于待求极小值的函数,我们可以采用以下步骤来使用这两种方进行求解: 1.确定初始点x0和搜索方向d0,并计算出目标函数在该点的梯度g0; 2.根据共轭方向的基本原理和公式,通过选择满足一定条件的新的搜索方向d1,继续更新“搜索历史”和“搜索方向”,直到满足终止条件; 3.同样根据共轭梯度法的基本原理和公式,通过对搜索历史进行正交化操作,计算出新的搜索方向d1,继续更新直至满足终止条件。 需要注意的是,在使用这两种方进行求解时,我们需要合理选择搜索方向和步长,同时控制迭代次数和误差精度,以达到高效率、高精度、高准确度的求解效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值