求树中每个点能达到的最大距离

这篇博客详细介绍了如何求解树结构中每个节点能到达的最远距离,提供了详细的解题思路和步骤,旨在帮助读者理解并解决此类问题。
摘要由CSDN通过智能技术生成

题解地址

http://blog.csdn.net/u013480600/article/details/21831363

//HDU2196 求树中每个点能达到的最大距离,结合解题报告看
//两次dfs
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=10000+200;
struct edge
{
    int to;//终端点
    int next;//下一条同样起点的边号
    int w;//权值
} edges[MAXN*2];
int tot;//总边数
int head[MAXN];//head[u]=i表示以u为起点的所有边中的第一条边是 i号边
void add_edge(int u,int v,int w)//添加从u->v,权值为w的边
{
    edges[tot].to=v;
    edges[tot].w=w;
    edges[tot].next = head[u];
    head[u] = tot++;
}
int dist[MAXN][3];//dist[i][0,1,2]分别为正向最大距离,正向次大距离,反向最大距离
int longest[MAXN];
int dfs1(int u,int fa)//返回u的正向最大距离
{
    if(dist[u][0]>=0)return dist[u][0];
    dist[u][0]=dist[u][1]=dist[u][2]=longest[u]=0;

    fo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值