opencv 函数用法

  1. cv2.putText()用法
cv2.putText(I,'there 0 error(s):',(50,150),cv2.FONT_HERSHEY_COMPLEX,6,(0,0,255),25)

各参数依次是:照片/添加的文字/左上角坐标/字体/字体大小/颜色/字体粗细

2.boundingRect(cnt)用 cv2.rectangle用法
矩形边框(Bounding Rectangle)是说,用一个最小的矩形,把找到的形状包起来。还有一个带旋转的矩形,面积会更小,效果见下图:
这里写图片描述
首先介绍下cv2.boundingRect(img)这个函数
这个函数很简单,img是一个二值图,也就是它的参数;
返回四个值,分别是x,y,w,h;
x,y是矩阵左上点的坐标,w,h是矩阵的宽和高
然后利用cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)画出矩行
参数解释
第一个参数:img是原图
第二个参数:(x,y)是矩阵的左上点坐标
第三个参数:(x+w,y+h)是矩阵的右下点坐标
第四个参数:(0,255,0)是画线对应的rgb颜色
第五个参数:2是所画的线的宽度

# 用绿色(0, 255, 0)来画出最小的矩形框架
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

# 用红色表示有旋转角度的矩形框架
rect = cv2.minAreaRect(cnt) # 获取最小包围矩形
box = cv2.cv.BoxPoints(rect)
box = np.int0(box)
cv2.drawContours(img, [box], 0, (0, 0, 255), 2)
cv2.imwrite('contours.png', img)

3.cv2.findContours()函数
OpenCV-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓。
声明:

#返回两个值:contours:hierarchy。
cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])  

参数详解:
第一个参数是寻找轮廓的图像;
第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):
cv2.RETR_EXTERNAL表示只检测外轮廓
cv2.RETR_LIST检测的轮廓不建立等级关系
cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
cv2.RETR_TREE建立一个等级树结构的轮廓。
第三个参数method为轮廓的近似办法
cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
返回值:
cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。
实现:

import cv2  

img = cv2.imread('D:\\test\\contour.jpg') 
# 灰度处理  
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  
# 二值化
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)  
 # 寻找连通矩形,检测轮廓  
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 
 #绘制轮廓
cv2.drawContours(img,contours,-1,(0,0,255),3)  

cv2.imshow("img", img)  
cv2.waitKey(0)  

需要注意的是cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图,参见4、5两行。第六行是检测轮廓,第七行是绘制轮廓。
结果:
这里写图片描述
注意,findcontours函数会“原地”修改输入的图像。
contour返回值:
cv2.findContours()函数首先返回一个list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。这个概念非常重要。在下面drawContours中会看见。

print (type(contours))  
print (type(contours[0]))  
print (len(contours)) 

可以验证上述信息。会看到本例中有两条轮廓,一个是五角星的,一个是矩形的。每个轮廓是一个ndarray,每个ndarray是轮廓上的点的集合。
由于我们知道返回的轮廓有两个,因此可通过

cv2.drawContours(img,contours,0,(0,0,255),3)  
cv2.drawContours(img,contours,1,(0,255,0),3)  

分别绘制两个轮廓,同时通过输出两个轮廓中存储的点的个数,可以看到,第一个轮廓中只有4个元素,这是因为轮廓中并不是存储轮廓上所有的点,而是只存储可以用直线描述轮廓的点的个数,比如一个“正立”的矩形,只需4个顶点就能描述轮廓了。

print (len(contours[0]))  
print (len(contours[1])) 

hierarchy返回值:
此外,该函数还可返回一个可选的hiararchy结果,这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。
通过:

print (type(hierarchy))  
print (hierarchy.ndim)  
print (hierarchy[0].ndim)  
print (hierarchy.shape)

得到

3  
2  
(1, 2, 4) 

可以看出,hierarchy本身包含两个ndarray,每个ndarray对应一个轮廓,每个轮廓有四个属性。

4.cv2.drawContours()函数
声明:

cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset ]]]]])  

第一个参数是指明在哪幅图像上绘制轮廓;
第二个参数是轮廓本身,在Python中是一个list。
第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓。后面的参数很简单。其中thickness表明轮廓线的宽度,如果是-1(cv2.FILLED),则为填充模式。
参考http://blog.csdn.net/gaoranfighting/article/details/34877549

没有更多推荐了,返回首页