python cv2 基于surf特征点匹配的图像拼接

基于surf特征点匹配的图像拼接:

1.读取要拼接的左右图像;

2.提取左右图像的surf特征点;

3.利用knn对左右图像的特征点进行匹配;

4.利用匹配的特征对,求出单应矩阵;

5.利用单应矩阵对右图像进行透视变化;

6.对左右图像进行拼接。

具体如下代码:

import cv2
import numpy as np
def warp_corner(H,src):
    '''
    :param H: 单应矩阵
    :param src: 透视变化的图像
    :return: 透视变化后的四个角,左上角开始,逆时钟
    '''

    warp_points=[]
    # 图像左上角,左下角
    src_left_up=np.array([0,0,1])
    src_left_down=np.array([0,src.shape[0],1])

    # 图像右上角,右下角
    src_right_up=np.array([src.shape[1],0,1])
    src_right_down=np.array([src.shape[1],src.shape[0],1])

    #透视变化后的左上角,左下角
    warp_left_up=H.dot(src_left_up)
    left_up=warp_left_up[0:2]/warp_left_up[2]
    warp_points.append(left_up)
    warp_left_down=H.dot(src_left_down)
    left_down=warp_left_down[0:2]/warp_left_down[2]
    warp_points.append(left_down)

    # 透视变化后的右上角,右下角
    warp_right_up=H.dot(src_right_up)
    right_up=warp_right_up[0:2]/warp_right_up[2]
    warp_points.append(right_up)
    warp_right_down=H.dot(src_right_down)
    right_down=warp_right_down[0:2]/warp_right_down[2]
    warp_points.append(right_down)
    return warp_points
def optim_mask(mask,warp_point):


    min_left_x = min(warp_point[0][0], warp_point[1][0])
    left_margin = mask.shape[1] - min_left_x
    points_zeros = np.where(mask == 0)
    x_indexs = points_zeros[1]
    alpha = (left_margin - (x_indexs - min_left_x)) / left_margin
    mask[points_zeros] = alpha
    return mask
def Seam_Left_Right(left,imagewarp,H,warp_point,with_optim_mask=False):
    '''
    :param left: 拼接的左图像
    :param imagewarp: 透视变化后的右图像
    :param H: 单应矩阵
    :param warp_point: 透视变化后的四个顶点
    :param with_optim_mask: 是否需要对拼接后的图像进行优化
    :return:
    '''
    w = left.shape[1]
    mask = imagewarp[:, 0:w]
    mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
    mask[mask != 0] = 1
    mask[mask == 0] = 0
    mask = 1 - mask
    mask = np.float32(mask)

    if with_optim_mask==True:
        mask=optim_mask(mask,warp_point)
    mask_rgb=np.stack([mask,mask,mask],axis=2)
    tt=np.uint8((1-mask_rgb)*255)
    left=left*mask_rgb+imagewarp[:,0:w]*(1-mask_rgb)
    imagewarp[:,0:w]=left
    return np.uint8(imagewarp)
def main():
    left=cv2.imread('/home/simple/convid_withornot_mask/recogizition_withornot_mask/ttt/b_t.jpg')
    #left=cv2.resize(left,dsize=(512,512))
    left_gray=cv2.cvtColor(left,cv2.COLOR_BGR2GRAY)
    right=cv2.imread('/home/simple/convid_withornot_mask/recogizition_withornot_mask/ttt/b.jpg')
    #right=cv2.resize(right,dsize=(512,512))
    right_gray=cv2.cvtColor(right,cv2.COLOR_BGR2GRAY)

    #提取左右图像的surf特征点
    detector=cv2.xfeatures2d_SURF.create(hessianThreshold=400)
    left_kps,left_dess=detector.detectAndCompute(left_gray,None)
    right_kps,right_dess=detector.detectAndCompute(right_gray,None)

    #利用knn对左右图像的特征点进行匹配
    matcher=cv2.FlannBasedMatcher_create()
    knn_matchers=matcher.knnMatch(left_dess,right_dess,2)
    good_keypoints=[]


    #挑出好的匹配点
    for m,n in knn_matchers:
        if m.distance<0.5*n.distance:
            good_keypoints.append(m)
    left_points=np.zeros(shape=(len(good_keypoints),2),dtype=np.float32)
    right_points=np.zeros(shape=(len(good_keypoints),2),dtype=np.float32)
    outimg=np.zeros(shape=(right.shape[0],right.shape[0]+left.shape[0],3),dtype=np.uint8)
    cv2.drawMatches(left,left_kps,right,right_kps,good_keypoints,outimg)
    # cv2.imshow('hks',outimg)
    # cv2.waitKey(0)
    for i in range(len(good_keypoints)):
        left_points[i][0]=left_kps[good_keypoints[i].queryIdx].pt[0]
        left_points[i][1]=left_kps[good_keypoints[i].queryIdx].pt[1]
        right_points[i][0]=right_kps[good_keypoints[i].trainIdx].pt[0]
        right_points[i][1]=right_kps[good_keypoints[i].trainIdx].pt[1]

    #求取单应矩阵
    H,_=cv2.findHomography(right_points,left_points)

    #求出右图像的透视变化顶点
    warp_point = warp_corner(H, right)
    #求出右图像的透视变化图像
    imagewarp=cv2.warpPerspective(right,H,(left.shape[1]+right.shape[1],left.shape[0]))

    #对左右图像进行拼接,返回最后的拼接图像
    image_seam_optim=Seam_Left_Right(left,imagewarp,H,warp_point,with_optim_mask=True)
    cv2.namedWindow('image_seam_optim',cv2.WINDOW_NORMAL)
    cv2.imshow('image_seam_optim',image_seam_optim)
    cv2.waitKey(0)
if __name__=='__main__':
    main()

其中,图像拼接时,有对结果进行优化,具体参考代码。

效果如下:

                                                                                                   左图

 

                                                                                             右图

                                                                                       拼接的图像

                                                                                    优化后的图像拼接

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页