Fibonacci数列算法分析

斐波那契数列
|—F(0)=0
|—F(1)=1
|—F(n)=F(n-1)+F(n-2) n>1
对于小于47的自变量求值,函数值可以用单纯的int类型来表示。

#include <iostream>
#include <vector>
#include <time.h>
#include <cmath>
using namespace std;

int fibo1(int n)
{
    if(n==0)return 0;
    if(n==1)return 1;
    return fibo1(n-1)-fibo1(n-2);
}
int fibo2(int n)
{
    int a=0,c;
    for(int b=1,c,i=2;i<=n;++i)
    {
        c=a+b,a=b,b=c;
    }
    return c;
}
int fibo3(int n)
{
    vector<int> v(n+1,0);v[1]=1;
    for(int i=2;i<=n;++i)
    {
        v[i]=v[i-1]+v[i-2];
    }
    return v[n];
}
int fibo4(int n)
{
    return (pow((1+sqrt(5.0))/2,n)-pow((1-sqrt(5.0))/2,n))/sqrt(5.0);
}
int main()
{
    int a;
    clock_t start=clock();
    for(int i=1;i<5;++i)
        a=fibo1(45);
     cout<<"Fibo1`s time was:"<<(clock()-start)/CLK_TCK<<"\n";

     start=clock();
     for(int i=1;i<5;++i)
     {
         a=fibo2(35);
     }
     cout<<"Fibo2`s time was:"<<(clock()-start)/CLK_TCK<<"\n";

     start=clock();
     for(int i=1;i<5;++i)
         a=fibo3(45);
     cout<<"Fibo3`s time was:"<<(clock()-start)/CLK_TCK<<"\n";
     start=clock();
     for(int i=1;i<5;++i)
         a=fibo4(45);
     cout<<"Fibo4`s time was: "<<(clock()-start)/CLK_TCK<<"\n";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值