如何使用libsvm进行分类(一)

本文介绍了在MATLAB 2014a环境下结合libsvm-3.20库进行分类的步骤,包括测试小例子及对MATLAB自带例子的实践与改进。
摘要由CSDN通过智能技术生成

参考:点击打开链接

环境为:matlab2014a+libsvm-3.20

测试小例子:

data = [176 70;
180 80;
161 45;
163 47];
label = [1;1;-1;-1];

model = svmtrain(label,data);

testdata = [190 85];
testdatalabel = -1;

<span style="color:#ff0000;">[predictlabel,accuracy,decision_values]</span> = svmpredict(testdatalabel,testdata,model);
predictlabel

输出结果:

Accuracy = 0% (0/1) (classification)
predictlabel =

     1

因为matlab版本不同,注意代码中红色部分。


参考:点击打开链接

测试matlab自带的例子:

1、将
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值