tensorflow2.0 api学习

本文详细介绍了TensorFlow 2.0中的数据扩展操作,包括tf.tile与tf.keras.backend.repeat_elements的区别,并对tf.data.Dataset的各种功能进行了深入讲解,如创建、切片、批处理、缓存、过滤、映射、预取、重复、分区、洗牌、跳过、选取、窗口和拼接等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.数据扩展

1.1 tf.tile 和tf.keras.backend.repeat_elements的区别

repeat_elements 是元素级别的,tile是维度级别的

  • repeat_elements(x, rep, axis):
    x 是输入,rep为重复次数,axis是沿着某个轴
b = tf.constant([[1, 2, 3],[4,5,6]])
c=tf.keras.backend.repeat_elements(b, rep=3, axis=1)
output:
<tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
       [4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)>

c=tf.keras.backend.repeat_elements(b, rep=2, axis=0)
output:
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [1, 2, 3],
       [4, 5, 6],
       [4, 5, 6]], dtype=int32)>

b = tf.constant([[[1, 2, 3],[4,5,6]],[[7, 8, 9],[10,9,8]]])
c=tf.keras.backend.repeat_elements(b, rep=3, axis=1)
c
output:
<tf.Tensor: shape=(2, 6, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 1,  2,  3],
        [ 1,  2,  3],
        [ 4,  5,  6],
        [ 4,  5,  6],
        [ 4,  5,  6]],

       [[ 7,  8,  9],
        [ 7,  8,  9],
        [ 7,  8,  9],
        [10,  9,  8],
        [10,  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值