Lightgbm算法

LightGBM是为了解决GBDT在海量数据中的效率问题而提出的,它使用基于直方图的决策树算法,支持高效并行训练,拥有更低的内存使用和更高的准确性。LightGBM的主要特点包括直方图做差加速、Leaf-wise的叶子生长策略、类别特征支持和并行学习。通过调整参数如num_leaves和min_data_in_leaf,可以有效防止过拟合并提高模型性能。
摘要由CSDN通过智能技术生成

Lightgbm算法

一. 发展过程----why Lightgbm

C 3.0 ( 信 息 增 益 , 信 息 增 益 率 ) − > C A R T ( G i n i ) − > 提 升 树 ( A d a B o o s t ) C3.0(信息增益,信息增益率)->CART(Gini)->提升树(AdaBoost) C3.0()>CART(Gini)>(AdaBoost)
− > G B D T − >

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值