推荐系统中保序回归校准方案

文章介绍了推荐系统中点击率校准的重要性,提出了保序回归的策略,该方法不会影响商品的排序结果。同时,文章提到了两种评价校准效果的指标:predictclickoverclick(PCOC)和calibration-N(cal-N),前者衡量校准后点击率的准确性,后者通过计算各簇的PCOC偏差来评估。
摘要由CSDN通过智能技术生成

校准目标是:使用户行为的预估值尽可能逼近真实概率值,众所周知,在推荐系统中,很多情况下,我们的点击率通常会被错误的估计(通常会被高估),所以需要进行校准。

一、保序回归

保序:只影响CTR的绝对值,但不影响多条数据CTR之间的相对大小,即不影响商品最终的排序结果
分桶:将所有数据按模型输出的预估值(pCTR)进行分桶,对桶内数据的label(0/1值)求平均,作为近似的真实CTR
回归:通过分段线性回归将pCTR映射到CTR上

二、校准评价指标

1、predict click over click(PCOC)

PCOC指标是校准之后的点击率与后验点击率(近似真实概率)的比值,越接近于1,意味着在绝对值上越准确,大于1为高估,小于1为低估,是一种常用的高低估评价指标。

2、calibration-N(cal-N)

cal-N将样本集合按照自定义规则划分出多个簇分别计算PCOC,并计算与1的偏差作为标准误差。举个例子,将pctr根据值大小划分为多个桶,每个桶为一个簇,计算每个簇的PCOC及其与1的偏差 数学公式:
在这里插入图片描述
参考:https://zhuanlan.zhihu.com/p/460061332

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值