零刻SER9 Pro 本地部署Deepseek指南:5分钟快速上手!

一、DeepSeek 概述

DeepSeek 是一个基于人工智能的智能问答和知识检索系统,专注于提供高效、精准的自然语言处理(NLP)解决方案。它结合了深度学习、知识图谱和向量检索技术,能够处理复杂的语言任务,如问答、对话生成、信息检索等。

想要在本地体验强大的 DeepSeek 大模型?零刻 SER9 Pro 是你的理想选择!通过 LM Studio 和 Ollama 的本地部署,你可以轻松运行 DeepSeek,享受更快速、更安全、更私密的 AI 体验。

为什么选择零刻 SER9 Pro?

  • 强劲性能: 搭载高性能处理器和显卡,轻松应对 DeepSeek 大模型的运算需求。
  • 超大内存: 支持扩展至 64GB 内存,为模型运行提供充足空间。
  • 高速存储: 配备 PCIe 4.0 SSD,实现快速数据读写,提升模型加载和运行速度。
  • 安静散热: 采用高效散热系统,即使长时间运行也能保持安静凉爽。

核心功能

  1. 智能问答

    • 支持基于自然语言的问题回答。

    • 能够理解上下文,提供连贯的对话体验。

  2. 知识检索

    • 支持从本地知识库或互联网中检索信息。

    • 通过向量数据库(如FAISS)实现高效检索。

  3. 联网搜索

    • 集成搜索引擎API,实时获取互联网信息。
  4. 多任务并发

    • 支持高并发请求处理,适用于大规模应用场景。
  5. 本地化部署

    • 支持本地部署,保护数据隐私。

应用场景

  • 企业知识库:用于企业内部文档检索和问答。

  • 智能客服:提供自动化的客户支持服务。

  • 教育辅助:帮助学生和教师快速获取知识。

  • 科研支持:加速文献检索和数据分析。


技术特点

  1. 深度学习模型

    • 基于Transformer架构,支持大规模预训练模型(如GPT、BERT等)。

    • 支持模型微调和定制化训练。

  2. 向量检索

    • 使用FAISS、Annoy等向量数据库,实现高效相似度检索。
  3. 多语言支持

    • 支持多种语言的问答和检索。
  4. 高性能计算

    • 支持GPU加速,优化计算性能。
  5. 可扩展性

    • 支持插件化扩展,轻松集成第三方工具和服务。

二、安装与配置

1. 安装 DeepSeek

DeepSeek 可以通过 LM Studio 和Ollama 来部署和运行 DeepSeek 模型

LM Studio部署安装教程:

1.访问 LM Studio官网,https://lmstudio.ai/,根据自己的操作系统下载合适的版本,这里以Windows系统为例,点击Download LM

Download LM Studio for Windows进行下载
在这里插入图片描述

2.软件下载完成后,双击打开进行安装,点击下一步
在这里插入图片描述

3.选择要安装的位置,然后点击安装
在这里插入图片描述在这里插入图片描述

4.安装完成后,点击完成,运行LM Studio
在这里插入图片描述

5.打开软件后,点击右上角 Skip omboarding 进入软件

在这里插入图片描述

6.点击右下角设置按钮,切换中文语言
在这里插入图片描述

7.点击搜索,选择合适的deepseek版本下载,作为示例,这里我选择Qwen 7B的小模型
在这里插入图片描述在这里插入图片描述

点击“Download”进行下载
在这里插入图片描述
在这里插入图片描述

8.下载完成后,点击顶部加载模型,然后点击加载
在这里插入图片描述
在这里插入图片描述

9.选择你下载的模型,根据电脑配置调整GPU和GCPU的参数
在这里插入图片描述

!

10.加载完成后就可以进行对话了
在这里插入图片描述

注意事项:

如果Lm Studio无法下载大模型,可在魔塔社区进行下载,链接地址:https://www.modelscope.cn/models

下载完成后,创建Models文件夹,以大模型文件名创建文件夹存放。
在这里插入图片描述

Ollama部署安装教程:

1.访问Ollama官网:https://ollama.com/,点击Download下载按钮,跳转到下载页面
在这里插入图片描述

2.根据自己的操作系统下载合适的版本,这里以Windows系统为例,点击Download for Windows进行下载
在这里插入图片描述

3.下载完成后,双击打开下载的文件,点击Install进行安装
在这里插入图片描述

4.安装完成后,按Win+R打开运行窗口,输入CMD打开命令提示符工具

在这里插入图片描述在这里插入图片描述

5.输入命令:ollama -v 即可查看安装版本,出现版本号说明安装成功
在这里插入图片描述

6.接下来安装大模型,输入命令:ollama run deepseek-r1:8b,进行下载deepseek模型
在这里插入图片描述

Ollama模型查询网站:https://ollama.com/search

deepseek-r1目前主要有:1.5b、7b、8b、14b、32b、70b、671b、这几种不同的开源模型,

B→billion→十亿 数字后面b是英文billion,整体代表的诗模型的参数量,1.5B就是15亿参数,7b就是70亿参数

参数越多模型越强,你得到的回答质量也就越高,但是参数越大,所需要消耗的资源也就越高,现存在4G或者是8G左右的可以选择7b或者是8b的模型版本

7.下载完成后,就可以直接进行对话使用了,关闭窗口后,按Win+R打开运行窗口,输入CMD打开命令提示符工具,输入名命令:ollama run deepseek-r1:8b即可再次对话
在这里插入图片描述

三、设置自定义模型下载路径

默认情况下,ollama模型存目录路径如下:

  • macOS:~/.ollama/models

  • linux:/user/share/ollama/.ollam/models

  • Windows:C:\Users\<username>\.ollama\models

Windows更改Ollama模型存放位置

在Windows系统下,若要修改模型的存放的位置,可以根据以下步骤操作;

1.打开系统设置界面,进入系统-系统信息,打开高级系统设置
在这里插入图片描述

2.在系统属性窗口内点击环境变量
在这里插入图片描述

3.在环境变量窗口中,点击"新建"创建一个新的系统变量或用户变量

  • 变量名:OLLAM_MODELS

  • 变量值:模型存放的路径,例如:D:\Ollam\Models

    点击“确定”进行保存

在这里插入图片描述

4.重启已经打开的Ollama的相关应用,使新路径生效,如果不生效也可以重启系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李佑辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值