AI智算-DeepSeek-r1:671b性能压测&H100

前言

继上次结合K8s、SGLang、LWS 等技术栈,完成分布式 DeepSeek-r1 推理集群的部署后,经过几天的实际使用,发现当并发数达到一定阈值时,性能出现下降。为进一步评估和优化集群性能,现对已部署的 DeepSeek-r1 推理集群进行深入的性能压测。

选型LLM 性能压测工具

经过调研,选择 推理引擎 SGLang 自带的 sglang.bench_serving 基准测试工具,以及 LocustEvalScope 两款成熟的性能测试工具,进行全面的性能评估。

测试环境

  • • CPU:INTEL® XEON® PLATINUM 8558 * 2 (192核/台)
  • • GPU:NVIDIA H100 80GB HBM3 * 2台(共计16卡,显存:1280GB)
  • • RAM:2.0TB/台
  • • OS:Ubuntu 22.04.5 LTS
  • • RDMA:4 * IB(400
### DeepSeek 试工具的功能介绍 DeepSeek 试工具旨在帮助开发者验证应用程序接口(API)的行为是否符合预期,确保API功能正常运行。该工具支持多种试场景,包括但不限于单元试、集成试以及负载试。 #### 单元试 通过模拟请求来检验单个端点的功能准确性,能够快速定位错误源并提高调试效率[^1]。 #### 集成试 用于评估不同模块间交互情况下的整体性能表现,有助于发现潜在兼容性问题,保障系统的稳定性和可靠性。 #### 负载试 模拟大量并发访问情景下系统响应时间及吞吐量变化趋势,提前识别可能存在的瓶颈位置以便优化改进。 ### DeepSeek 试工具使用指南 #### 准备工作 - 创建项目专属目录结构,并初始化Git仓库(可选) - 构建适合项目的虚拟环境以隔离依赖关系: ```bash virtualenv -p python3 deepseek_test_env source deepseek_test_env/bin/activate ``` 安装必要的Python包和其他依赖项,具体命令如下所示: ```bash pip install requests pytest locustio ``` 以上操作完成后即可开始编写针对特定需求定制化的自动化脚本文件[^3]。 #### 编写试案例 对于简单的HTTP GET/POST方法调用可以直接采用`requests`库完成;而对于更复杂的业务逻辑则推荐借助于`pytest`框架实现参数化处理等功能扩展[^4]。 当涉及到高并发力仿真时,则可以考虑引入LocustIO这样的开源分布式平台来进行大规模流量注入实验设计。 ```python import requests def test_api_get(): url = "http://localhost:8000/api/v1/resource" response = requests.get(url) assert response.status_code == 200, f"Unexpected status code {response.status_code}" data = response.json() assert isinstance(data['id'], int), "ID should be an integer value" if __name__ == "__main__": test_api_get() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻花之梦~~

谢谢老板的支持和鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值