商汤秋招-编程题

题目

  • 只做了第一题,是给若干个confidence以及groundtruth label,计算在不同recall下的precision。
  • 思路:将confidence降序排列,依次降低阈值,直到所有的正例都被召回,计算各个不同召回率下的precision即可。

代码

#include <cstdlib>
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
#include <unordered_map>
#include <unordered_set>
#include <map>
#include <set>
#include <stdio.h>
#include <numeric>
#include <algorithm>
#include <functional>
#include <stack>
#include <queue>
#include <cmath>
#include <vector>
#include <memory>
#include <memory.h>
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
typedef unsigned char uchar;

//#define G_DEBUG
// 定义unordered_set<pair<int,int>, pairhash> sets时会用到
struct pairhash {
public:
    template <typename T, typename U>
    std::size_t operator()(const std::pair<T, U> &x) const
    {
        return std::hash<T>()(x.first) ^ std::hash<U>()(x.second);
    }
};

struct score
{
    int gt;
    double conf;
    score(int _gt, double _conf) { gt = _gt; conf = _conf; }

    score() {  }
};

bool cmp(score& left, score &right)
{
    if (left.conf < right.conf)
        return false;
    else if (left.conf > right.conf)
        return true;
    else
        return left.gt >= right.gt;
}


int main()
{

#ifdef G_DEBUG
    // 调试使用
    ifstream file("data.txt");
    int N = 0;
    file >> N;
    vector<score> confidence(N);
    vector<int> gt(N, 0);
    for (int i = 0; i < N; i++)
    {
        file >> confidence[i].gt >> confidence[i].conf;
    }

    file.close();
#else
    int N = 0;
    cin >> N;
    vector<score> confidence(N);
    vector<int> gt(N, 0);
    for (int i = 0; i < N; i++)
    {
        cin >> confidence[i].gt >> confidence[i].conf;
    }
#endif

    int positive = 0;
    for (auto & val : confidence)
        positive += val.gt;

    vector<int> nums(7, 0);
    for (int i = 0; i < nums.size(); i++)
        nums[i] = positive / 10 * (i + 3);

    nums.push_back(positive);
    std::sort(confidence.begin(), confidence.end(), cmp);

    int num_idx = 0;
    int curr_gt_pos = 0;
    int idx = 0;
    while (idx < N && num_idx < 7)
    {
        if (curr_gt_pos == nums[num_idx])
        {
            double curr_precision = curr_gt_pos*1.0 / idx;
            while (idx < N && curr_gt_pos < nums[num_idx + 1])
            {
                curr_gt_pos += confidence[idx].gt;
                idx++;

                //curr_precision = max( curr_precision, curr_gt_pos*1.0 / idx);
            }
            curr_precision = curr_precision * 100 + 0.5;
            int out = (int)curr_precision;
            cout << out << endl;
            num_idx++;
        }
        else
        {
            curr_gt_pos += confidence[idx].gt;
            idx++;
        }
    }


    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

littletomatodonkey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值