机器视觉标定以及标定板在机器视觉系统标定中的作用

从目前的市场情况来看,机器视觉这项自动化成像技术已经得到了广泛的应用,其在工业生产、智能交通、安防监控等领域的应用优势显然得到了广大用户的认可。机器视觉系统包括图像采集和图像处理两大环节,由光源、镜头、工业相机、图像处理软件等核心组件构成,主要有定位、识别与检测三大功能。在整个机器视觉系统成像过程中,高精度的系统标定是实现高清成像的基础与重点,对最终应用有着直接的影响。

        机器视觉标定的分类

        空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由工业相机成像的几何模型决定的,这些几何模型参数就是工业相机参数。在通常情况下,这些参数必须通过实验与计算才能得到,而这个实验与计算的过程就被称为机器视觉系统标定。目前,机器视觉标定主要有传统标定方法与自标定方法两大类:

        其一,传统机器视觉标定方法。

        传统机器视觉标定方法需要标定参照物,在一定的工业相机模型下,通过对特定标定参照物进行图像处理,并利用一系列数学变换公式计算及优化,以此获取相机模型内部参数和外部参数。另外,为了提高计算精度,还需确定非线性畸变校正参数。根据标定参照物与算法思路的不同,传统机器视觉标定方法又可以分为基于3D立体靶标的相机标定、基于2D平面靶标的相机标定等几类。不过,需要注意的是,这一标定方法在场景未知或是相机任意运动的情况下效果不佳,甚至很难实现。

        其二,机器视觉自标定方法。

        机器视觉自标定方法是在20世纪90年代初,由Faugeras,Luong,Maybank等人首次提出的,这一自标定法是利用工业相机本身参数之间的约束关系来进行标定,而与场景或是工业相机的运动无关,所以相比传统标定方法更为灵活。

        机器视觉标定的作用

        机器视觉标定的精度大小,直接影响着系统成像的精度,可以说,只有做好了前期的这一标定工作,后续工作才能正常展开,所以,提高标定精度是当前科研工作的重要方面之一。机器视觉系统标定方法的存在,尤其是自标定方法,极大地提高了成像精度,接下来,研究人员还将继续对标定方法进行优化升级,例如进一步研究解决如何提高标定算法的鲁棒性等等。

通过上文的介绍,我们了解了机器视觉系统标定这一操作在整个机器视觉成像过程的重要性,其直接影响着最终所获取图像的清晰度与精度。建立在机器视觉系统基础上的标定方法,无论是相对于人工标定,还是其他标定方法,都有着一定的性能优势。目前,通常情况下,机器视觉系统标定会用到标定板,标定板的使用可以大幅提高检测及测量精度指标,有效保障机器视觉系统标定能够在精密测量与检测应用中完全发挥其作用。

        我们知道,相机在进行标定时首先需要建立相机成像的几何模型,通过相机拍摄带有固定间距图案阵列平板、经过标定算法的计算,最终就可得出相机的几何模型,从而获取高精度的测量以及重建结果。而在这一标定过程中,所使用到的带有固定间距图案阵列的平板就是我们今天所要探讨的标定板。

        标定板在机器视觉系统标定中的作用主要有以下两个方面:

        1、校正畸形。在利用机器视觉技术进行精度测量或是检测时,镜头本身存在的畸变是不可避免的,而使用标定板则可以在机器视觉、图像测量、三维重建等应用中,校正镜头畸变,有效保障成像精度。

        2、确定关系。使用标定板可以确定物理尺寸和像素间的换算关系,确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,使得所成图像能够更加准确。

        要想满足精度需求,需要高水平的软件技术支持,也同样需要更为真实准确的图像信息,而从标定板在机器视觉系统标定中的作用来看,其在保障成像精度与准确度上确实有着非常重要的意义。

转载地址:http://www.cnimage.com/services/knowledge/140.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值