前言
环境空间(environment)对于大部分的R使用者来说,都是比较陌生的。虽然我们不了解它的运行原理,但也不影响我们使用R语言。环境空间是R语言中关于计算机方面的底层设计,主要用于R语言是环境加载器。通过环境空间,封装了加载器的运行过程,让使用者在不知道底层细节的情况下,可以任意加载使用到的第三方的R语言程序包。
本文将揭开R语言中环境空间的神秘面纱。
目录
- R语言的环境空间
- 环境空间的特征
- 环境空间的访问
1 R语言的环境空间
在R语言中,不管是变量,对象,或者函数,都存在于R的环境空间中,R程序在运行时都自己的运行时空间。R语言的环境(environment)是由内核定义的一个数据结构,由一系列的、有层次关系的框架(frame)组成,每个环境对应一个框架,用来区别不同的运行时空间(scope)。
环境空间有一些特征,比如 每个环境空间要有唯一的名字;环境空间是引入类型的,非赋值类型;环境空间都有父环境空间,空环境是最顶层的环境空间,没有父空间;子环境空间会继承父环境空间的变量等。
本文的系统环境
- Linux: Ubuntu Server 12.04.2 LTS 64bit
- R: 3.0.1 x86_64-pc-linux-gnu
为了方便我们检查对象的类型,引入pryr包作为辅助工具。关于pryr包的介绍,请参考文章:撬动R内核的高级工具包pryr
# 加载pryr包
> library(pryr)
1.1 创建一个环境
查看new.env()函数的定义。
new.env(hash = TRUE, parent = parent.frame(), size = 29L)
参数列表:
- hash 默认值是TRUE,使用Hash table的结构。
- parent 指定要创建环境的父环境。
- size 初始化的环境空间大小。
运行函数new.env(),创建一个新环境。
# 创建环境e1
> e1 <- new.env()
# 输出e1
> e1
<environment: 0x3d7eef0>
# 查看e1类型
> class(e1)
[1] "environment"
# otype查看e1类型,属于基本类型
> otype(e1)
[1] "primitive"
接下来,我们在e1环境中定义一个变量。
# 定义变量a
> e1$a <- 10
# 输出变量a
> e1$a
[1] 10
# 列出当前环境中的变量
> ls()
[1] "e1"
# 列出e1环境中的变量
> ls(e1)
[1] "a"
这时,我们看到了两个环境空间,当前环境空间和e1环境空间。e1做为一个变量在当前的环境中被定义,而变量a是在e1环境中被定义。
1.2 环境空间的层次结构
R语言的环境是一种有层次关系的结构,每个环境都有上一层环境,直到最顶层的空环境。R语言中有5种环境的定义 全局环境,内部环境,父环境,空环境 和 包环境。
- 当前环境,即用户环境,是用户程序运行的环境空间。
- 内部环境,构造出来的环境,可以是通过 new.env()函数显示创建的环境空间,也可以是匿名的环境空间。
- 父环境,即上一层环境,环境空间的上一层。
- 空环境,即顶层环境,没有父环境空间。
- 包环境,包封装的环境空间。
# 当前环境
> environment()
<environment: R_GlobalEnv>
# 内部环境
> e1 <- new.env()
> e1
<environment: 0x3e28948>
# 父环境
> parent.env(e1)
<environment: R_GlobalEnv>
# 空环境
> emptyenv()
<environment: R_EmptyEnv>
# 包环境
> baseenv()
<environment: base>
可以用search() 函数查看当前环境中加载的R包。
# 查看环境空间
> search()
[1] ".GlobalEnv" "package:pryr" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"
# 当前的环境空间
> .GlobalEnv
<environment: R_GlobalEnv>
> parent.frame()
<environment: R_GlobalEnv>
查看父环境空间
# e1环境的父环境空间
> parent.env(e1)
<environment: R_GlobalEnv>
# 当前环境的父环境空间
> parent.env(environment())
<environment: package:pryr>
attr(,"name")
[1] "package:pryr"
attr(,"path")
[1] "/home/conan/R/x86_64-pc-linux-gnu-library/3.0/pryr"
# base包环境的父环境空间
> parent.env(baseenv())
<environment: R_EmptyEnv>
# 空环境的父环境空间,因没有父环境,所以出现错误
> parent.env(emptyenv())
Error in parent.env(emptyenv()) : the empty environment has no parent
既然环境空间是有层次关系的,那么我们打印这个层次结构,从自定义的e1环境到空环境。
# 递归打印父环境空间
> parent.call<-function(e){
+ print(e)
+ if(is.environment(e) & !identical(emptyenv(),e)){
+ parent.call(parent.env(e))
+ }
+ }
# 运行函数
> parent.call(e1)
<environment: 0x366bf18>
<environment: R_GlobalEnv>
<environment: package:pryr>
attr(,"name")
[1] "package:pryr"
attr(,"path")
[1] "/home/conan/R/x86_64-pc-linux-gnu-library/3.0/pryr"
<environment: package:stats>
attr(,"name")
[1] "package:stats"
attr(,"path")
[1] "/usr/lib/R/library/stats"
<environment: package:graphics>
attr(,"name")
[1] "package:graphics"
attr(,"path")
[1] "/usr/lib/R/library/graphics"
<environment: package:grDevices>
attr(,"name")
[1] "package:grDevices"
attr(,"path")
[1] "/usr/lib/R/library/grDevices"
<environment: package:utils>
attr(,"name")
[1] "package:utils"
attr(,"path")
[1] "/usr/lib/R/library/utils"
<environment: package:datasets>
attr(,"name")
[1] "package:datasets"
attr(,"path")
[1] "/usr/lib/R/library/datasets"
<environment: package:methods>
attr(,"name")
[1] "package:methods"
attr(,"path")
[1] "/usr/lib/R/library/methods"
<environment: 0x20cb5d0>
attr(,"name")
[1] "Autoloads"
<environment: base>
<environment: R_EmptyEnv>
通过找父环境空间,我们看到整个环境空间的层次结构,如图所示。
通过层次结构图,又可以发现R包的加载顺序。 最先加载的是base包,然后通过base::Autoloads()函数,分别加载6个基础包,上层的pryr包则是我手动加载的,最后以R_GlobalEnv环境为当前运行环境空间,内部环境空间是R_GlobalEnv环境的下层环境空间。
2. 环境空间的特征
上面中提到环境空间有一些特征,下面我们分别介绍一下。
2.1 每个环境空间中的对象名字要唯一
在当前环境空间中定义变量名x,并对x进行操作。
# 定义变量x
> x<-10;x
[1] 10
# 查看x地址
> address(x)
[1] "0x2874068"
# 对x改变赋值
> x<-11;x
[1] 11
# 查看x地址
> address(x)
[1] "0x28744c8"
这样我们可以看到,x变量在每次赋值的时候,内存地址都会发生改变,但是x的名字还是x。
在不同的环境空间中,再定义一个变量x。
# 创建环境空间e1
> e1<-new.env()
# 在e1中定义变量x
> e1$x<-20
# 输出x
> x;e1$x
[1] 12
[1] 20
在不同的环境空间中,可以有同名的变量名字。
2.2 环境空间变量的赋值
如果把e1环境空间变量,赋值给另一个变量f,再修改其环境内部变量,会是什么结果呢?
# 把e1赋值给f
> f <- e1
# 修改e1中a变量的值
> e1$a <- 1111
# 查看f环境空间的a值
> f$a
[1] 1111
# 比较f环境和e1环境,是相等的
> identical(f,e1)
[1] TRUE
# 查看e1和f的环境地址,是完全相同的
> e1
<environment: 0x3e28948>
> f
<environment: 0x3e28948>
所以,环境空间的赋值,是一种引入的传递,而不是新创建一个环境空间。
2.3 定义更上层的环境空间
空环境是最顶层的环境空间,然后是base包的环境空间,我们可以尝试创建一个靠近顶层的环境空间,让父环境空间是base包的环境空间。
# 创建e2环境,以base为父环境
> e2 <- new.env(parent = baseenv())
> e2
<environment: 0x37cab18>
# 查看e2环境的父环境列表
> parent.call(e2)
<environment: 0x37cab18>
<environment: base>
<environment: R_EmptyEnv>
这样e2环境空间就位于了环境空间中的第三层。
2.4 子环境空间会继承父环境空间的变量
在当前环境中,定义一个变量x, 子环境e1中,对x重新赋值。
# 在当前环境,定义变量x
> x<-1:5
# 新建环境空间e1
> e1 <- new.env()
# e1环境空间中定义变量x
> e1$x<-1
# 在e1环境空间中定义函数,并对父环境空间的x变量重新赋值
> e1$fun<-function(y){
+ print('e1::fun')
+ x<<-y
+ }
# 运行e1环境空间中的函数,将x赋值为50
> e1$fun(50)
[1] "e1::fun"
# 当前环境x变量被修改
> x
[1] 50
# e1环境x变量没有变化
> e1$x
[1] 1
这样我们就可以利用 <<- 赋值符号,来修改父环境中的变量。
3. 环境空间的访问
R语言中有一些辅助函数,可以帮助我们理解和使用环境空间。
- new.env 创建一个环境空间
- is.environment 判断是否是环境空间类型。
- environment 查看函数的环境空间定义。
- environmentName 查看环境空间名字。
- env.profile 查看环境空间属性值。
- ls 查看环境空间中的对象。
- get 取出指定环境空间中的对象。
- rm 删除环境空间中的对象。
- assign 给环境空间中的变量赋值。
- exists 查看指定环境空间中的对象是否存在。
接下来,我们进行环境空间的访问操作。
# 新建一个环境空间
> e1<-new.env()
# 判断e1是否是环境空间类型
> is.environment(e1)
[1] TRUE
# 查看当前环境空间
> environment()
<environment: R_GlobalEnv>
# 查看函数的环境空间
> environment(ls)
<environment: namespace:base>
# 查看环境空间的名字
> environmentName(baseenv())
[1] "base"
> environmentName(environment())
[1] "R_GlobalEnv"
# 查看e1环境空间的名字
> environmentName(e1)
[1] ""
# 设置e1的名字
> attr(e1,"name")<-"e1"
> environmentName(e1)
[1] "e1"
# 查看e1环境空间的属性值
> env.profile(e1)
$size
[1] 29
$nchains
[1] 1
$counts
[1] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
环境空间中的对象操作。
# 清空当前环境空间定义的所的对象
> rm(list=ls())
# 定义环境空间有,和3个变量x
> e1<-new.env()
> x<-1:5;y<-2:10
> e1$x<-10
# 查看当前环境中的变量
> ls()
[1] "e1" "x" "y"
# 查看e1环境空间中的变量
> ls(e1)
[1] "x"
# 取当前环境空间的x值
> get("x")
[1] 1 2 3 4 5
# 取e1环境空间的x值
> get("x",envir=e1)
[1] 10
# 在e1环境空间中去y值,这个y值是从当前环境空间中继承的
> get("y",envir=e1)
[1] 2 3 4 5 6 7 8 9 10
# 禁止环境空间的继承,在e1环境空间中去y值,出错
> get("y",envir=e1,inherits=FALSE)
Error in get("y", envir = e1, inherits = FALSE) : object 'y' not found
# 给x重新赋值
> assign('x',77);x
[1] 77
# 给e1环境空间的x重新赋值
> assign('x',99,envir=e1);e1$x
[1] 99
# 在没有继承的情况下,给e1空间增加y变量
> assign('y',99,envir=e1,inherits=FALSE);
> y
[1] 2 3 4 5 6 7 8 9 10
> e1$y
[1] 99
# 删除e1环境空间的变量x,和当前环境空间的y
> rm(x,envir=e1)
> e1$x
NULL
> x
[1] 77
# 查看当前环境空间,和e1环境空间
> ls()
[1] "e1" "x"
> ls(e1)
[1] "y"
# 查看x对象在当前环境空间是否存在
> exists('x')
[1] TRUE
# 查看x对象在e1环境空间是否存在
> exists('x',envir=e1)
[1] TRUE
# 查看x对象,在没有继承的情况下,在e1环境空间是否存在
> exists('x',envir=e1,inherits=FALSE)
[1] FALSE
另外,pryr包的where函数可以直接定位对象的环境空间。
# 查看mean函数定义的环境空间
> where(mean)
Error: is.character(name) is not TRUE
> where("mean")
<environment: base>
# 查看where函数定义的环境空间
> where("where")
<environment: package:pryr>
attr(,"name")
[1] "package:pryr"
attr(,"path")
[1] "/home/conan/R/x86_64-pc-linux-gnu-library/3.0/pryr"
# 查看x变量定义的环境空间
> where("x")
<environment: R_GlobalEnv>
# 查看y变量定义的环境空间,由于y变量定义在e1中,e1是当前空间的子空间,所以访问不到y变量
> where("y")
Error: Can't find y
> e1$y
[1] 99
# 在e1空间查看y变量
> where("y",e1)
<environment: 0x2545db0>