前一段时间,从配置hadoop到运行kmeans的mapreduce程序,着实让我纠结了几天,昨天终于把前面遇到的配置问题和程序运行问题搞定。Kmeans算法看起来很简单,但对于第一次接触mapreduce程序来说,还是有些挑战,还好基本都搞明白了。Kmeans算法是从网上下的在此分析一下过程。
Kmeans.java
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- public class KMeans {
- public static void main(String[] args) throws Exception
- {
- CenterInitial centerInitial = new CenterInitial();
- centerInitial.run(args);//初始化中心点
- int times=0;
- double s = 0,shold = 0.1;//shold是预制。
- do {
- Configuration conf = new Configuration();
- conf.set("fs.default.name", "hdfs://localhost:9000");
- Job job = new Job(conf,"KMeans");//建立KMeans的MapReduce作业
- job.setJarByClass(KMeans.class);//设定作业的启动类
- job.setOutputKeyClass(Text.class);//设定Key输出的格式:Text
- job.setOutputValueClass(Text.class);//设定value输出的格式:Text
- job.setMapperClass(KMapper.class);//设定Mapper类
- job.setMapOutputKeyClass(Text.class);
- job.setMapOutputValueClass(Text.class);//设定Reducer类
- job.setReducerClass(KReducer.class);
- FileSystem fs = FileSystem.get(conf);
- fs.delete(new Path(args[2]),true);//args[2]是output目录,fs.delete是将已存在的output删除
- //解析输入和输出参数,分别作为作业的输入和输出,都是文件
- FileInputFormat.addInputPath(job, new Path(args[0]));
- FileOutputFormat.setOutputPath(job, new Path(args[2]));
- //运行作业并判断是否完成成功
- job.waitForCompletion(true);
- if(job.waitForCompletion(true))//上一次mapreduce过程结束
- {
- //上两个中心点做比较,如果中心点之间的距离小于阈值就停止;如果距离大于阈值,就把最近的中心点作为新中心点
- NewCenter newCenter = new NewCenter();
- s = newCenter.run(args);
- times++;
- }
- } while(s > shold);//当误差小于阈值停止。
- System.out.println("Iterator: " + times);//迭代次数
- }
- }
hdfs://localhost:9000/home/administrator/hadoop/kmeans/input hdfs://localhost:9000/home/administrator/hadoop/kmeans hdfs://localhost:9000/home/administrator/hadoop/kmeans/output
代码的功能在程序中注释。