转载自:http://www.52caml.com/home/
计算广告与机器学习(英文:Computational Advertising and Machine Learning;简称CAML)
大家好,欢迎来到CAML技术共享平台!猴年到,祝大家春节愉快,万事如意!!!
CAML平台致力于整理和分享互联网广告领域的核心问题和解决方案。作者水平有限,期望能与对此话题感兴趣的朋友一起学习、交流和分享。
众所周知,机器学习是一门交叉性很强的学科,而我们这里主要探讨的是如何利用机器学习这把利器,有效地解决在线广告领域中的学习问题,最终达到通过learning from data提升数据价值和流量变现效率。
《深入浅出ML》10大家族系列笔记
工作之余整理的《深入浅出ML》系列笔记,主要从模型的角度按照“Family”(伐木累)的形式,整理出机器学习10大家族。希望大家review!!!
不够全面,但囊括了经典和主要的学习方法。近日上传才发现,线下传到线上需要做一些格式上的调整,目前仅有第01章和第06章更新完成。
-
线性回归;Ridge;Lasso;Logistic回归;…
-
熵的概念(信息熵、条件熵、联合熵、相对熵、互信息);最大熵模型;
-
感知机;ID3; CART等
-
SVM, Kernel Methods
-
高斯判别分析;朴素贝叶斯;贝叶斯网络;概率图模型;
-
加法模型; AdaBoost; L2Boosting; Boosted Decision Tree; Gradient Boosting;
-
空间;PAC;VC维;学习准则;模型选择;泛化能力;
-
隐马尔可夫模型;条件随机场;
-
SVD; PCA; 非负矩阵分解;Tensor分解; 因子分解机;
-
EM算法;高斯混合模型;K-means等
Next …
下一步会上传分布式机器学习DMLC系列中XGBoost 、Rabit、dmlc-core等开源工具背后的算法、并行系统和应用等.
注:该话题归档到《大规模机器学习》系列