自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Anomynous的博客

Never joke about math or science

  • 博客(13)
  • 收藏
  • 关注

原创 计算广告技术框架

找完工作之后问了师父以后的工作内容,说是要进行广告CTR预估方面的业务,so...在网上、图书馆找了很多相关的资源和论文自己学,早点入门早点上手。一边写毕设论文,一边正经看了将近10天刘鹏老师的《计算广告》,大致了解了自己以后的工作背景和环境,抽时间总结一下。一、计算广告处理框架我对一个东西的掌握比较习惯从整体框架入手,知道我在系统中所处的位置该做的事,并如何与其他业务组件相协作。

2016-11-16 17:00:23 1891

转载 CTR点击率预估干货分享

1.指标广告点击率预估是程序化广告交易框架的非常重要的组件,点击率预估主要有两个层次的指标: 1.排序指标。排序指标是最基本的指标,它决定了我们有没有能力把最合适的广告找出来去呈现给最合适的用户。这个是变现的基础,从技术上,我们用AUC来度量。2.数值指标。数值指标是进一步的指标,是竞价环节进一步优化的基础,一般DSP比较看中这个指标。如果我们对CTR普遍低估,我们出价会相对保

2016-11-16 16:15:31 673

原创 1.三整数排序

特别小白的一道题,纯娱乐使用题目要求:输入3个整数,,从小到大排序后输出样例输入:20 7 33样例输出:7 20 33解法:法一:3个整数的总共排列顺序一共就有6种可能,写个if-else把这6种可能都列举出来就OK,不改变原来给的整数的顺序,代码太简单,不写了             时间复杂度:O(1)                 空间复杂

2016-10-23 21:32:52 576

原创 计算广告学方向概述

计算广告学算是最近几年兴起的一个交叉学科,主要是用于进行广告的CTR预估。这里所谓的CTR就是指click-through-rate,通俗的讲就是每条广告被展示出后的点击率。对于互联网行业来说,公司的主要盈利模式有三个:广告,游戏,电商。对于没有后两者业务的互联网公司来说,广告是公司来钱的主要途径。从技术层面来说,广告CTR预估是属于大规模稀疏机器学习问题,和普通的机器学习问题不同的是,广告数据量

2016-10-03 16:33:30 4481 2

原创 利用上下文信息

季节效应。反映时间本身对用户

2016-05-24 10:42:13 1732

原创 利用用户标签数据

给用户推荐物品的方法中基于物品属性的方法可用隐语义模型得到。一种重要的特征表现方式是标签。打标签的方式有两种,一是专家给物品打标签,另一种是让普通用户给物品打标签(UGC)。当用户对一个物品打上标签时,该标签一方面描述了用户的兴趣,另一方面表示了物品的语义,将用户和物品联系起来。一、代表应用1.Delicious:允许用户给每个网页打标签,通过标签重新组织整个互联网。2.CiteULi

2016-05-23 12:58:54 3011

原创 推荐系统冷启动问题

一、冷启动问题简介如何在没有大量用户数据的情况下设计个性化推荐系统并让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题。1.  分类(3类):1)用户冷启动:如何给新用户做个性化推荐2)物品冷启动:如何将新物品推荐给可能对其感兴趣的用户。在新闻网站等时效性很强的网站中非常重要。3)系统冷启动:如何在一个新开发的网站上设计个性化推荐,从而在网站刚发布时就让用户体验到个性化推

2016-05-21 13:46:47 25123

原创 基于图的模型

一、用户行为数据的二分图表示(用户物品二分图)一个二元组(u,i)表示用户u对物品i产生过行为。图中节点由用户和物品组成。每个二元组对应一个边。该边是无向边。二、基于图的推荐算法给用户u推荐物品的任务可转化为度量用户定点和与该节点没有边直接项链的物品节点在图上的相关性,相关性越高的物品在推荐列表中的权重越高。一般来说,衡量图中顶点的相关性主要取决于下面3个方面:两顶点间的路径数(很

2016-05-20 16:53:50 1052

原创 隐语义模型(LFM)

该算法最早在文本领域被提出,用于找到文本的隐含语义。核心思想是通过隐含特征(latent  factor)联系用户兴趣和物品(item)。是基于机器学习的方法。找出潜在的主题和分类。基于用户的行为对item进行自动聚类,划分到不同类别/主题,即用户的兴趣。算法实例:假设用户A喜欢的音乐是小清新、吉他伴奏的(即所谓的latent  factor),则若一个歌曲(item)含这两个标签就推荐给用户

2016-05-20 10:25:58 11706 1

原创 基于邻域的算法

仅基于用户行为数据的推荐算法是协同过滤算法,应用最广的是基于邻域的算法。是基于统计的方法。大体分为两种,一是基于用户的协同过滤算法,二是基于物品的协同过滤算法。一、基于用户的协同过滤算法(已被应用于邮件过滤和新闻过滤中)——UserCF1.原始算法(参数:K)总体思路:先找到有相似兴趣的其他用户,然后把那些用户喜欢、而用户A没有听说过的物品推荐表给A。由此可知,该算法主要由两个步骤:

2016-05-18 18:55:04 9974

原创 用户行为数据

总体思路是通过用户留下的文字和行为了解用户兴趣和需求,通过算法自动发掘用户行为数据。基于用户行为分析的推荐算法一般称为协同过滤算法。个性化推荐算法通过对用户行为的深度分析,可给用户带来更好的网站使用体验。所谓协同过滤,是指用户可齐心协力,通过不断和网站互动使自己的推荐列表能不断过滤掉自己不感兴趣的东西,越来越满足自己的需求。对于电商来说,最常见的是购物车分析,分析哪些商品会同时出现在购物车中。

2016-05-18 16:19:55 7489

原创 推荐系统测评指标

一个完整的推荐系统一般含3个参与方:用户、物品提供者和提供推荐系统的网站。一个好的推荐系统是能令三方共赢的系统。好的推荐系统不仅能准确预测用户的行为,还能扩展用户的视野,帮助用户发现那些他们可能会感兴趣,但却不容易发现的东西。自己的理解:对用户来说,好推荐系统有较好的新颖性和惊喜度。对提供者来说,要有较高的用户满意度和覆盖率。一、实验方法1.离线实验需要有一个日志数据集,不需一

2016-05-17 16:16:40 10445

原创 推荐系统概论

1.1 什么是推荐系统       个性化推荐系统:一个自动化工具,可以分析你的历史兴趣进行推荐。推荐系统的任务是联系用户(消费方)和信息(提供方),帮助用户发现对自己有价值的信息,帮助信息展现在对它感兴趣的用户面前。使生产者和消费者双赢。不需要用户提供明确的需求,而是通过分析用户的历史行为给用户的兴趣建模,从而给用户推荐能满足他们兴趣和需求的但很难发现的商品。实质是通过一定方式将用户和物

2016-05-17 14:14:36 657

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除