1. 只允许买卖一次股票,求最大收益
Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Example 1:
Input: [7, 1, 5, 3, 6, 4] Output: 5 max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)
Example 2:
Input: [7, 6, 4, 3, 1] Output: 0 In this case, no transaction is done, i.e. max profit = 0.
思路:以当前股票为基准,找到之前的最小值,用来更新最大收益。
class Solution(object):
def maxProfit(self, prices):
if len(prices)<=1:
return 0
low_price = prices[0]
max_pro = 0
for i in prices:
low_price = min(low_price,i)
max_pro = max(max_pro,i-low_price)
return max_pro
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
思路:假定每次的买入都会在第二天抛出,然后将所有收益为正数的加起来,就是最大的利润
class Solution(object):
def maxProfit(self, prices):
max_pro = 0
if not prices:
return max_pro
save = prices[0]
for i in prices[1:]:
if i>save:
max_pro += i - save
save = i
return max_pro