CLRS 14.1动态顺序统计

14.1-1
不画图,直接描述访问的关键字分别是(关键字后面括号的内容是 x.left.size+1 i ):
26(12+1 > 10),17(7+1 < 10),21(2+1 > 2(注意此时的 i 变了)),19(0+1 < 2),20(1 == 1)

14.1-2
第一次迭代: y.key=35,r=1
第二次迭代: y.key=38,r=3
第三次迭代: y.key=30,r=3
第四次迭代: y.key=41,r=16

14.1-3
见练习 14.1-8 下面的代码non_recursion_SELECT部分。

14.1-4
见练习 14.1-8 下面的代码OS_RANK部分。

14.1-5
先求出元素 x 的秩 r,再求出 r+i 的元素即可。由于OS_RANKOS_SELECT都只是 O(lgn) ,因此满足题意。

OS-SUCCESSOR(T, x, i )
    r = OS-RANK(T, x)
    s = r + i
    return OS-SELECT(T.root, s)

14.1-6
当插入一个结点 z 时,我们从根结点开始向下搜索结点 z 需要插入的位置,在搜索路径中的每个结点 x ,若结点 z 插入在 x 的左子树,则 x.rank 加 1,否则 x.rank 不变。删除则同理,当被删除的 z 在结点 x 的左子树时, x.rank 减 1,否则 x.rank 不变。
对于旋转操作,考虑一下左旋 x ,旋转前 x 的右孩子是 y 并且 r=y.rank,旋转后, x.rank 不变, y.rank=r+x.rank 即可,对于右旋,情况类似。

14.1-7
对一个数组 A[1...n] ,所有元素的逆序对总和为: j=1n|Inv(j)| ,其中 |Inv(j)|={i:i<jA[i]>A[j]} ,也就是排在 j 前面且比 A[j] 大的元素。
现在来观察 |Inv(j)| ,它和子数组 A[1..j] 有关,设 r(j) 表示 A[j] 在子数组 A[1..j] 的秩,则有 j=r(j)+|Inv(j)| 。举个例子,令 j=5 ,子数组 A[1..5] 中比 A[5] 大的有 3 个数,所以 r(j)=2,|Inv(j)|=3,j=2+3
从而 |Inv(j)|=jr(j) 。所以我们每插入一个数,求出插入后这个数的秩,然后就可以得出此数的逆序对数。将所有的逆序对数相加即可得到总逆序对数。
插入一个数时间为 O(lgn) ,一个有 n 个数,总的时间就是 O(nlgn)

14.1-8
先考虑怎么判断弦相交。对于一个弦,它有两个端点 S,E ,这两个端点分别和原点连线,分别取名为 SO,EO ,以 x 轴正反向、原点和SO可以形成一个角,同理 x 轴正反向、原点和EO可以形成一个角(规定 x 轴正反向、原点和 SO之间的夹角小于180度)。现在假设由两条弦 S1E1,S2E2 ,四个角 S1,E1,S2,E2 ,若 S1<S2<E1<E2S2<S1<E2<E1 表示两弦相交。

这里写图片描述

接下来:

按照角度小到大的顺序遍历这2n个端点:
    如果该端点是某条弦X的“起点”
        将弦X插入顺序统计树中(以X的“起点”角度作为key);
    如果该端点是某条弦X的“终点”
        统计出目前这棵树中有多少条弦的“起点”角度比X的“起点”角度大,这就是与X相交的弦的数量;
        将弦X从顺序统计树中删除;

这个问题类似的转化为了上一题的求逆序对,总的时间就是 O(nlgn)



附上红黑树的顺序统计量代码(代码看不懂的请看书上红黑树部分,基本都和书上的伪代码差不多)

#include <iostream>
#include <climits>
#include <iomanip>
using std::cout;
using std::endl;

enum COLOR
{
    RED = 0,BLACK = 1
};

struct OS_RB_TREE
{
    int key;
    int size;
    COLOR color;
    OS_RB_TREE *parent;
    OS_RB_TREE *left;
    OS_RB_TREE *right;
};

OS_RB_TREE nil = {INT_MIN,0,BLACK,NULL,NULL,NULL};//哨兵

void LEFT_ROTATE(OS_RB_TREE **root,OS_RB_TREE *x)
{
    if(x->right != &nil)
    {
        OS_RB_TREE *y = x->right;
        x->right = y->left;
        if(y->left != &nil)
            y->left->parent = x;
        y->parent = x->parent;
        if(x->parent == &nil)
            *root = y;
        else if(x == x->parent->left)
            x->parent->left = y;
        else x->parent->right = y;
        y->left = x;
        x->parent = y;
        y->size = x->size;     //更新size
        x->size = x->left->size + x->right->size + 1;
    }
}

void RIGHT_ROTATE(OS_RB_TREE **root,OS_RB_TREE *x)
{
    if(x->left != &nil)
    {
        OS_RB_TREE *y = x->left;
        x->left = y->right;
        if(y->right != &nil)
            y->right->parent = x;
        y->parent = x->parent;
        if(x->parent == &nil)
            *root = y;
        else if(x == x->parent->left)
            x->parent->left = y;
        else x->parent->right = y;
        y->right = x;
        x->parent = y;
        y->size = x->size;
        x->size = x->left->size + x->right->size + 1;
    }
}

OS_RB_TREE *SEARCH(OS_RB_TREE *root,int key)
{
    if(root == &nil || root->key == key)
        return root;
    else if(root->key > key)
        return SEARCH(root->left,key);
    else return SEARCH(root->right,key);
}

OS_RB_TREE *MINIMUM(OS_RB_TREE *x)
{
    if(x == &nil || x->left == &nil)
        return x;
    else return MINIMUM(x->left);
}

OS_RB_TREE *MAXIMUM(OS_RB_TREE *x)
{
    if(x == &nil || x->right == &nil)
        return x;
    else return MAXIMUM(x->right);
}

OS_RB_TREE *SUCCESSOR(OS_RB_TREE *x)
{
    if(x == &nil)
        return x;
    if(x->right != &nil)
        return MINIMUM(x->right);
    OS_RB_TREE *y = x->parent;
    while(y != &nil && x == y->right)
    {
        x = y;
        y = y->parent;
    }
    return y;
}

OS_RB_TREE *PREDECESSOR(OS_RB_TREE *x)
{
    if(x == &nil)
        return x;
    if(x->left != &nil)
        return MAXIMUM(x->left);
    OS_RB_TREE *y = x->parent;
    while(y != &nil && x == y->left)
    {
        x = y;
        y = y->parent;
    }
    return y;
}

void OS_RB_TREE_INSERT_FIXUP(OS_RB_TREE **root,OS_RB_TREE *z)
{
    while(z->parent->color == RED)
    {
        if(z->parent == z->parent->parent->left)
        {
            OS_RB_TREE *y = z->parent->parent->right;
            if(y->color == RED)
            {
                z->parent->color = BLACK;
                y->color = BLACK;
                z->parent->parent->color = RED;
                z = z->parent->parent;
            }
            else
            {
                if(z == z->parent->right)
                {
                    z = z->parent;
                    LEFT_ROTATE(root,z);
                }
                z->parent->color = BLACK;
                z->parent->parent->color = RED;
                RIGHT_ROTATE(root,z->parent->parent);
            }
        }
        else
        {
            OS_RB_TREE *y = z->parent->parent->left;
            if(y->color == RED)
            {
                z->parent->color = BLACK;
                y->color = BLACK;
                z->parent->parent->color = RED;
                z = z->parent->parent;
            }
            else
            {
                if(z == z->parent->left)
                {
                    z = z->parent;
                    RIGHT_ROTATE(root,z);
                }
                z->parent->color = BLACK;
                z->parent->parent->color = RED;
                LEFT_ROTATE(root,z->parent->parent);
            }
        }
    }
    (*root)->color = BLACK;
}

void OS_RB_TREE_INSERT(OS_RB_TREE **root,int key)
{
    OS_RB_TREE *y = &nil;
    OS_RB_TREE *x = *root;
    while(x != &nil)
    {
        y = x;
        y->size += 1;   //根到插入结点路径上每个结点size都加1
        if(x->key > key)
            x = x->left;
        else x = x->right;
    }
    OS_RB_TREE *z = new OS_RB_TREE;
    z->parent = y;
    if(y == &nil)
        *root = z;
    else if(key < y->key)
        y->left = z;
    else y->right = z;
    z->key = key;
    z->size = 1;
    z->left = z->right = &nil;
    z->color = RED;
    OS_RB_TREE_INSERT_FIXUP(root,z);
}

void OS_RB_TREE_TRANSPLATE(OS_RB_TREE **root,OS_RB_TREE *u,OS_RB_TREE *v)
{
    if(u->parent == &nil)
        *root = v;
    else if(u == u->parent->left)
        u->parent->left = v;
    else u->parent->right = v;
    v->parent = u->parent;
}

void OS_RB_TREE_DELETE_FIXUP(OS_RB_TREE **root,OS_RB_TREE *x)
{
    while(x != *root && x->color == BLACK)
    {
        if(x == x->parent->left)
        {
            OS_RB_TREE *w = x->parent->right;
            if(w->color == RED)
            {
                w->color = BLACK;
                x->parent->color = RED;
                LEFT_ROTATE(root,x->parent);
                w = x->parent->right;
            }
            if(w->left->color == BLACK && w->right->color == BLACK)
            {
                w->color = RED;
                x = x->parent;
            }
            else
            {
                if(w->right->color == BLACK)
                {
                    w->left->color = BLACK;
                    w->color = RED;
                    RIGHT_ROTATE(root,w);
                    w = x->parent->right;
                }
                w->color = x->parent->color;
                x->parent->color = BLACK;
                w->right->color = BLACK;
                LEFT_ROTATE(root,x->parent);
                x = *root;
            }
        }
        else
        {
            OS_RB_TREE *w = x->parent->left;
            if(w->color == RED)
            {
                w->color = BLACK;
                x->parent->color = RED;
                RIGHT_ROTATE(root,x->parent);
                w = x->parent->left;
            }
            if(w->left->color == BLACK && w->right->color == BLACK)
            {
                w->color = RED;
                x = x->parent;
            }
            else
            {
                if(w->left->color == BLACK)
                {
                    w->right->color = BLACK;
                    w->color = RED;
                    LEFT_ROTATE(root,w);
                    w = x->parent->left;
                }
                w->color = x->parent->color;
                x->parent->color = BLACK;
                w->left->color = BLACK;
                RIGHT_ROTATE(root,x->parent);
                x = *root;
            }
        }
    }
    x->color = BLACK;
}

void OS_RB_TREE_DELETE(OS_RB_TREE **root,int key)
{
    OS_RB_TREE *z = SEARCH(*root,key);
    if(z == &nil)
        return;
    OS_RB_TREE *y = z;
    COLOR y_original_color = y->color;
    OS_RB_TREE *x;
    if(z->left == &nil)
    {
        x = z->right;
        OS_RB_TREE_TRANSPLATE(root,z,z->right);
        OS_RB_TREE *parent = z->parent;
        while(parent != &nil)   //祖先结点的size都减1
        {
            parent->size -= 1;
            parent = parent->parent;
        }
    }
    else if(z->right == &nil)
    {
        x = z->left;
        OS_RB_TREE_TRANSPLATE(root,z,z->left);
        OS_RB_TREE *parent = z->parent;
        while(parent != &nil)
        {
            parent->size -= 1;
            parent = parent->parent;
        }
    }
    else
    {
        y = MINIMUM(z->right);
        y_original_color = y->color;

        OS_RB_TREE *parent = y->parent;
        while(parent != &nil)
        {
            parent->size -= 1;
            parent = parent->parent;
        }

        x = y->right;
        if(y->parent == z)
            x->parent = y;
        else
        {
            OS_RB_TREE_TRANSPLATE(root,y,y->right);
            y->right = z->right;
            y->right->parent = y;
        }
        OS_RB_TREE_TRANSPLATE(root,z,y);
        y->left = z->left;
        y->left->parent = y;
        y->color = z->color;
    }
    if(y_original_color == BLACK)
        OS_RB_TREE_DELETE_FIXUP(root,x);
    delete z;
}

OS_RB_TREE *SELECT(OS_RB_TREE *x,int i)
{
    int r = x->left->size + 1;
    if(i == r)
        return x;
    else if(i < r)
        return SELECT(x->left,i);
    else return SELECT(x->right,i-r);
}

OS_RB_TREE *non_recursion_SELECT(OS_RB_TREE *x,int i)
{
    int r = x->left->size + 1;
    while(r != i)
    {
        if(i < r)
        {
            x = x->left;
            r = x->left->size + 1;
        }
        else
        {
            x = x->right;
            i -= r;
            r = x->left->size + 1;
        }
    }
    return x;
}

int OS_RANK(OS_RB_TREE *root,int key)
{
    if(key == root->key)
        return root->left->size + 1;
    else if(key < root->key)
        return OS_RANK(root->left,key);
    else return OS_RANK(root->right,key) + root->left->size + 1;
}

int non_recursion_OS_RANK(OS_RB_TREE *root,OS_RB_TREE *x)
{
    int r = x->left->size + 1;
    OS_RB_TREE *y = x;
    while(y != root)
    {
        if(y == y->parent->right)
            r += y->parent->left->size + 1;
        y = y->parent;
    }
    return r;
}

void preOrder(OS_RB_TREE *root)
{
    if(root != &nil)
    {
        cout << "key is: " << std::setw(3) << root->key << " it's size is:"  << root->size << " and color is: ";
        if(root->color == BLACK)
            cout << "BLACK" << endl;
        else cout << "RED" << endl;
        preOrder(root->left);
        preOrder(root->right);
    }
}

void inOrder(OS_RB_TREE *root)
{
    if(root != &nil)
    {
        inOrder(root->left);
        cout << "key is: " << std::setw(3) << root->key << " it's size is:"  << root->size << " and color is: ";
        if(root->color == BLACK)
            cout << "BLACK" << endl;
        else cout << "RED" << endl;
        inOrder(root->right);
    }
}

void postOrder(OS_RB_TREE *root)
{
    if(root != &nil)
    {
        postOrder(root->left);
        postOrder(root->right);
        cout << "key is: " << std::setw(3) << root->key << " it's size is:"  << root->size << " and color is: ";
        if(root->color == BLACK)
            cout << "BLACK" << endl;
        else cout << "RED" << endl;
    }
}

int main()
{
    int ia[] = {41,38,31,12,19,8};
    OS_RB_TREE *root = &nil;
    for(int i = 0; i < 6; ++i)                 //创建红黑树
        OS_RB_TREE_INSERT(&root,ia[i]);

    cout << "preOder is" << endl;
    preOrder(root);
    cout << endl;
    cout << "inOder is" << endl;
    inOrder(root);
    cout << endl;
    cout << "postOder is" << endl;
    postOrder(root);
    cout << endl;

    int i = 4;                                 //第i小的元素
    OS_RB_TREE *x = SELECT(root,i);
    if(x != &nil)
    {
        int r = non_recursion_OS_RANK(root,x);
        cout << "The " << i << "th smallest is: " << x->key << " and rank is: " << r << endl;
    }
    else cout << "no this element" << endl;
    cout << endl;

    OS_RB_TREE_DELETE(&root,8);              //删除关键字8的结点
    cout << "after delete key 8:" << endl;
    cout << "preOder is" << endl;
    preOrder(root);
    cout << endl;
    cout << "inOder is" << endl;
    inOrder(root);
    cout << endl;
    cout << "postOder is" << endl;
    postOrder(root);
    cout << endl;

    OS_RB_TREE_DELETE(&root,12);             //删除关键字12的结点
    cout << "after delete key 12:" << endl;
    cout << "preOder is" << endl;
    preOrder(root);
    cout << endl;
    cout << "inOder is" << endl;
    inOrder(root);
    cout << endl;
    cout << "postOder is" << endl;
    postOrder(root);
    cout << endl;

    OS_RB_TREE_DELETE(&root,19);              //删除关键字19的结点
    cout << "after delete key 19:" << endl;
    cout << "preOder is" << endl;
    preOrder(root);
    cout << endl;
    cout << "inOder is" << endl;
    inOrder(root);
    cout << endl;
    cout << "postOder is" << endl;
    postOrder(root);

    cout << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值