机器学习中 ablation 的解释

Ablation Study在机器学习中用于分析系统组件的重要性。通过移除模型的特定部分并观察性能变化,可以了解每个组件对整体性能的贡献。这种研究方法要求系统在组件缺失时仍能保持功能,体现适度退化。Ablation Study常见于神经网络分析,帮助优化模型设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

阅读机器学习论文中,遇见 ablation 一词


一、维基百科

在人工智能(AI),尤其是机器学习(ML)领域,ablation 指移除AI系统的一个组件。 Ablation study 指通过研究AI系统移除某一组件之后的性能,来理解该组件对整个系统的作用。Ablation study 要求系统表现出适度退化(graceful degradation):即使丢失或削弱某个组件系统也能保持功能继续运行。

In artificial intelligence (AI), particularly machine learning (ML), ablation is the removal of a component of an AI system. An ablation study studies the performance of an AI system by removing certain components, to understand the contribution of the component to the overall system. The term is by analogy with biology (removal of components of an organism), and, continuing the analogy, is particularly used in the analysis of artificial neural nets, by analogy with ablative brain surgery.1 Ablation studies require that the system exhibit graceful degradation: that they continue to function even when certain components are missing or degraded.

二、知乎


  1. Meyes, Richard; Lu, Melanie; de Puiseau, Constantin Waubert; Meisen, Tobias (2019-01-24). “Ablation Studies in Artificial Neural Networks” ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值