论文学习:基于机器学习的光声图像分析1

3/25——3/31期间论文学习笔记,关于基于机器学习的光声图像分析的6篇1区论文

血管结构模拟&分割:Quantification of vascular networks in photoacoustic mesoscopy

链接
数据集链接

摘要

这篇论文提出了一种新的方法,利用中观光声成像(Mesoscopic Photoacoustic Imaging, PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体肿瘤内的3D血管网络结构。通过对人源化乳腺癌患者衍生的异种移植物(PDX)模型进行光声成像,研究团队能够详细捕获和评估肿瘤血管的复杂性和异质性。研究中使用Lindenmayer系统(L-系统)生成计算机模拟的血管结构作为基准真值,并测试了四种不同的血管分割方法:自动阈值法(AT)、带血管性过滤的自动阈值法(AT+VF)、随机森林分类器(RF)、带血管性过滤的随机森林分类器(RF+VF)。结果表明,基于学习的RF分割方法在保存深层血管直径和血量方面表现优越,而规则基分割方法配合血管性图像过滤则能准确保存表层血管网络结构。

进一步地,该研究通过免疫组化(IHC)分析验证了图像分析结果的准确性,并发现特定分割方法能显著影响对肿瘤血管结构和功能参数的量化评估。此外,研究结果还强调了在应用中观PAI作为评估活体血管网络工具时,验证分割方法的重要性。

通过这项工作,研究团队展示了中观光声成像结合先进图像分析技术在定量化肿瘤血管网络方面的潜力,这对于理解肿瘤的生物学特性、监测治疗效果以及开发新的治疗策略具有重要意义。

技术路线

  1. 生成计算机模拟的真实血管结构:利用Lindenmayer系统(L-Systems)生成3D血管结构(称为L-nets),然后将其转换为二进制图像体积。

  2. 光声图像的合成模拟:使用L-nets模拟嵌入在肌肉组织中的体内光声血管网络,通过SIMPA python包和k-Wave MATLAB工具箱进行模拟。

  3. 字符串幻影:制备包含已知直径纤维的字符串幻影,用于提供具有已知直径的成像目标。

  4. 动物实验:根据英国动物(科学程序)法案的规定,进行活体血管肿瘤模型的实验。

  5. 光声成像:使用光声显微技术(RSOM)进行成像,捕获光声反应。

  6. 分割和提取血管结构和拓扑描述符:对收集的数据进行预处理,然后进行分割、骨架化和血管网络的结构分析。

  7. 使用自动阈值或随机森林分类器进行图像分割:测试基于规则的阈值法和基于学习的随机森林分类器进行分割。

  8. 使用3D CNN提取肿瘤ROI:训练3D卷积神经网络自动提取PAI体积中的肿瘤区域。

  9. 网络结构和拓扑数据分析:对血管网络进行拓扑数据分析,使用软件执行TDA和血管结构分析。

  10. 免疫组化(IHC):进行离体验证,对固定的肿瘤组织进行切片、染色和图像分析。

  11. 统计分析:使用统计软件进行数据分析,评估分割网络与真实L-nets之间的准确性和关系强度。使用多种统计方法评估结果的显著性。

实验结果

  1. 合成血管网络的模拟:通过使用合成的血管网络模型(L-nets),测试了四种分割方法(自动阈值法(AT)、带血管性过滤前的自动阈值法(AT+VF)、随机森林分类器(RF)、带血管性过滤前的随机森林分类器(RF+VF))。结果显示,基于学习的RF分割方法在分割掩模、保存血管直径和血量方面表现优于其他方法,特别是在深层成像方面。

  2. 信号到噪声比(SNR)的影响:实验中发现,随着成像深度的增加,所有方法的SNR都会降低,但RF分割方法能够更好地应对深层成像的SNR降低,相比于AT方法,它在预测血管体积方面更为准确。

  3. 统计和拓扑数据分析:通过对每个分割掩模进行骨架化处理,并应用统计和拓扑数据分析,来评估不同分割方法对核心血管网络描述符的量化影响。分析结果表明,AT+VF方法在保留L-nets架构方面表现最佳,提供了较高的R2值和较低的MSE值。

  4. 实物幻影测试:使用设计的实物幻影来比较不同分割管道的性能,发现所有方法的分割精度随成像深度的增加而降低,但RF方法对深层字符串体积的预测在所有深度上都更为准确。

  5. 血管性过滤对活体肿瘤图像的影响:在活体肿瘤图像分析中,血管性过滤(VF)导致血管直径增加,进而显著增加了计算的血量。

  6. 与离体免疫组化(IHC)的比较:对人源化乳腺癌患者衍生的异种移植物(PDX)进行的血管分割与离体免疫组化(IHC)结果相比较为有利。特别是,随机森林方法在分割深层血管方面显示出更好的性能,并且其分割结果与血管成熟度、密度和低氧指标的免疫组化标记(如CD31、ASMA和CAIX)显示出较强的相关性。

这些结果突出了基于随机森林的分割方法在深层成像和维持高质量血管体积预测方面的优势,以及选择适当的分割方法对于准确评估活体血管网络的重要性。

启发

Lindenmayer系统的迁移应用(生成骨小梁结构)

可以使用Lindenmayer系统(L-系统)生成骨小梁结构。虽然L-系统最初是为模拟植物的生长和分支结构而设计的,但其原理可以应用于生成任何分形或自相似的结构,包括类似于骨小梁的复杂和分支网络结构。骨小梁的结构特点是它们的分布和方向与力学应力的分布紧密相关,这与植物的生长方式类似,植物会朝向光源生长,形成特定的分支模式。

通过定义适当的重写规则和参数,L-系统可以模拟骨小梁在骨组织中的生长和分布模式。这种方法能够产生具有特定方向性和分布的复杂结构,这些结构在形态上与自然骨组织中的骨小梁相似。因此,L-系统在生物力学模型、骨组织工程和计算材料科学中有潜在应用,用于研究和模拟骨骼的微观结构和其适应性变化。

Lindenmayer系统,通常称为L-系统,是一种用于模拟植物生长和细胞结构的形式语法。它是由匈牙利生物学家阿里斯特德·林登迈尔(Aristid Lindenmayer)在1968年提出的,最初目的是为了提供一个数学描述植物生长的框架。L-系统是基于字符串重写规则的一种数学模型,通过迭代应用这些规则来生成复杂的结构。

L-系统的核心思想是从一个初始字符串开始,然后根据一组预定义的规则(重写规则)对字符串中的每个字符进行替换,多次迭代这个过程可以产生高度复杂和详细的模式。这种方法非常适合于描述和生成具有自相似性和分形性质的自然形态,特别是植物的分枝结构。

在L-系统的语境中,有几个关键概念:

  • 字母表:一个包含所有可用字符(符号)的集合,这些字符可以代表植物的不同部分,如茎、叶等。
  • 公理:初始字符串,是生成过程开始的起点。
  • 规则:定义如何替换字符串中的字符的一组规则。每个规则都指定了一个目标字符(在当前字符串中找到的字符)和一个替换字符串(用来替换目标字符的新字符串序列)。
  • 迭代:应用重写规则的过程。每一次迭代都会增加结果的复杂性。

拓扑数据分析(TDA)在医学成像分析中的应用

什么是TDA

拓扑数据分析(TDA)是一种用于研究数据的形状(或拓扑)的高级数学方法。它能够提取和分析数据集中隐藏的结构和模式,尤其是那些在传统数据分析方法中可能难以识别的。TDA主要侧重于数据的“形状”,而不仅仅是其数值属性,这使其能够揭示数据之间的复杂关系和内在连接。

TDA的核心思想基于拓扑学,即数学中研究空间形状及其变化的分支。通过将数据视为点云或其他几何结构,TDA利用数学工具来理解这些结构的基本“形状”特征,如空洞、连通性和环状结构等。这种分析不受尺度变化、旋转或其他几何变换的影响,因而在分析形状时具有很高的灵活性和鲁棒性。

TDA中常用的一个关键概念是持续同调(Persistent Homology),它是用来量化数据集中形状特征的持久性或稳定性。通过建立一系列嵌套的子空间(通常基于点之间的距离)并分析它们的拓扑变化,可以识别和跟踪数据中的空洞和连通组分随尺度变化的行为。这种方法生成的持续图或条形码可以用来可视化和比较数据集的拓扑特性。

TDA在许多领域都有应用,包括生物学、医学成像、传感器网络、数据挖掘和机器学习。例如,在医学成像分析中,TDA可以帮助识别和量化图像中的重要结构,如血管网络、肿瘤形状或脑结构的连通性。通过分析这些结构的拓扑属性,研究人员可以获得有关生物或医学过程的深入洞察。

具体应用

拓扑数据分析(TDA)在医学成像分析中的应用主要通过揭示和量化成像数据中的复杂结构和模式来进行。以下是一些TDA在医学成像分析中的具体应用方式:

  1. 识别和量化生物结构:TDA可以用于识别和量化医学图像中的关键生物结构,如血管网络、肿瘤形状、脑结构的连通性

  • 30
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值