迷宫寻宝(二)
时间限制:
1000 ms | 内存限制:
10000 KB
难度:
5
-
描述
-
一个叫ACM的寻宝者找到了一个藏宝图,它根据藏宝图找到了一个迷宫,这是一个很特别的迷宫,迷宫是一100*100的个正方形区域,里面有很多墙,这些墙都是由一些直线构成的,如下图。
墙把迷宫分隔成很多藏宝室,任何两个藏宝室之间都没有门。
ACM现在准备用开凿设备在相邻两个藏宝室的墙中间凿开一个门,最终取出迷宫中的宝物。
但是,开凿门是一件很费力费时的工作,ACM想开凿尽量少的门取出宝物,现在请你写一个程序来帮助它判断一下最少需要开几个门吧。
-
输入
-
第一行输入一个正数N(N<10)表示测试数据组数
每组测试数据的第一行是一个整数n(0<=n<=30),代表了墙的个数,随后的n行里每行有四个整数x1,x2,y1,y2,这四个数分别是代表一个墙的两个端点的坐标。外围的正方形四个顶点固定在(0,0)(0,100)(100,0)(100,100)这四堵个墙不在上面的n个数里。注意,不能在两个线的交点处开凿门。
数据保证任意两个中间墙的交点不在四周的墙上。
输完所有的墙后,输入两个数,x,y(可能不是整数),表示宝藏的坐标。
输出
- 输出最少需要开凿的门的个数 样例输入
-
1 7 20 0 37 100 40 0 76 100 85 0 0 75 100 90 0 90 0 71 100 61 0 14 100 38 100 47 47 100 54.5 55.4
样例输出
-
2
思路:
遍历所有边界点, 求到宝藏的最少穿墙数, 运用线段相交判断。注意所有数据用double型接收。
#include <stdio.h> #include <string.h> #include <stdlib.h> typedef struct Node { double x, y; }pos; typedef struct Segment { pos sp, ep; }segment; segment wall[50]; double det(pos a, pos b, pos c) { return (a.x-b.x)*(c.y-b.y)-(a.y-b.y)*(c.x-b.x); } int cross(pos a, pos b, pos c, pos d) { if(det(a, b, c)*det(a, b, d) < 0 && det(d, c, a)*det(d, c, b) < 0) { return 1; } else { return 0; } } int main() { int i, j, t, n, min, cnt; pos sp, ep, tp, cp; segment tw; scanf("%d", &t); while(t--) { scanf("%d", &n); for(i = 0; i < n; i++) { scanf("%lf%lf%lf%lf", &sp.x, &sp.y, &ep.x, &ep.y); wall[i].sp = sp; wall[i].ep = ep; } scanf("%lf%lf", &cp.x, &cp.y); tw.ep = cp; min = 0xfffffff; for(i = 0; i <= 100; i++) { tp.x = i; tp.y = 0; tw.sp = tp; cnt = 0; for(j = 0; j < n; j++) { if(cross(tw.sp, tw.ep, wall[j].sp, wall[j].ep)) { cnt++; } } if(cnt < min) { min = cnt; } tp.x = i; tp.y = 100; tw.sp = tp; cnt = 0; for(j = 0; j < n; j++) { if(cross(tw.sp, tw.ep, wall[j].sp, wall[j].ep)) { cnt++; } } if(cnt < min) { min = cnt; } tp.x = 0; tp.y = i; tw.sp = tp; cnt = 0; for(j = 0; j < n; j++) { if(cross(tw.sp, tw.ep, wall[j].sp, wall[j].ep)) { cnt++; } } if(cnt < min) { min = cnt; } tp.x = 100; tp.y = i; tw.sp = tp; cnt = 0; for(j = 0; j < n; j++) { if(cross(tw.sp, tw.ep, wall[j].sp, wall[j].ep)) { cnt++; } } if(cnt < min) { min = cnt; } } printf("%d\n", min+1); } return 0; }
-
第一行输入一个正数N(N<10)表示测试数据组数