总结:Large Scale Distributed Deep Networks


其中的并行思想有两部分:

1. 通过model parallel实现多个machine训练单个模型

2.通过复制 1 中训练的单个模型, 异步训练不同的数据集(data parallel)


详解上面两种思想的实现:

1.model parallel:将整个神经网络的的神经元划分到不同的机器上,只有处于机器边际的节点间才通过通信交换数据。



2.data parallel: 复制上图中构建的model,将数据集分成几小块,分别在这些model中训练。这里讲涉及到model parameters的共享问题。这里只记录了Downpour SGD算法。


如上图:model的参数都存放在parameter server,各个model replicas从parameter server对应的shard中获取参数,并将

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值