腾讯笔试:n人组队问题

腾讯笔试:n人组队问题

题目

某部门共有 n n n个人,现在需要从所有人中选出任意数量(大于0)的人组成一个小队,并从中选出一个队长,那么一共有多少种组队方式?其中 1 ≤ n ≤ 1 0 9 1≤n≤10^9 1n109,由于组队方式的数目可能会很大,请将结果对 ( 1 0 9 + 7 ) (10^9+7) (109+7)取余后输出。

示例

输入: 2
输出: 4

解释

如果将2个人记为“1”和“2”,则共有4种组队方式(其中上方带点标记的为队长):
{ 1 ˙ \dot{1} 1˙ ̇},{ 2 ˙ \dot{2} 2˙},{ 1 ˙ \dot{1} 1˙, 2},{1, 2 ˙ \dot{2} 2˙}

解法

思路1

按排列组合的方式直接解,队伍人数为 i ( 1 ≤ i ≤ n ) i(1\leq i \leq n) i(1in)的情况有 C n i C_n^i Cni种,其中每一种又对应 i i i种情况(每个人都可以被选为队长),则总共的组队方式数目为
∑ i = 1 n i ⋅ C n i \sum_{i=1}^{n}i \cdot C_n^i i=1niCni
其中 C n i C_n^i Cni表示组合数,即在 n n n个对象中选择 i i i个对象的选择方式的数目。对应的代码为

// 思路1
def fnc(a,b):
    if b == 0:
        return a
    elif b == a:
        return 1
    ans = 1
    num, den = a, b
    for _ in range(b):
        ans *= num / den
        num -= 1
        den -= 1
    return ans

n = int(input())
MOD = int(1e9 + 7)
ans = 0
for i in range(1,n+1):
    ans += i * fnc(n,i) % MOD
print(int(ans))

经测试,这种方式不是溢出就是超时,无法通过。

思路2

最后组成的队伍中必然有一个队长,这个队长可能是 n n n个人中的任意一个,那么队长是任意一个人的组队方式相等,也就是说总的组队方式数必然是一个数量的 n n n倍,将那个数目记为 x x x(总数目为 n x nx nx),接下来考虑 x x x的值;
已经有一个人被选为队长了,其余的人构成一个集合,那么在这个集合中任选一个子集即可与队长组成队伍(即便是空集也可以),由于剩下的一共有 ( n − 1 ) (n-1) (n1)个人,则 x x x便等于子集的总数 2 n − 1 2^{n-1} 2n1,于是
n x = n ⋅ 2 ( n − 1 ) nx = n \cdot 2^{(n-1)} nx=n2(n1)
这样,我们直接求出了解析解。
观察这个表达式以及 n n n的取值范围,显然,接下来我们将面临2个问题:

  1. 若直接使用幂函数计算,则必然溢出;
  2. 考虑同余定理,使用迭代的方式对进行运算且在每次迭代时均进行取余运算,算法复杂度为 O ( n ) O(n) O(n),必然超时。

可以对 2 ( n − 1 ) 2^{(n-1)} 2(n1)不断进行二分拆分,最终达到 O ( O( O(log ( ⁡ n ) ) (⁡n)) (n))的复杂度;在每次拆分时都进行一次取余运算,以避免溢出。前者解决了超时问题,后者解决了溢出问题。最终代码

// 思路2
def power_mod(n, MOD):
    if n == 1:
        return 2
    elif n % 2 == 0:
        return (power_mod(n / 2, MOD) ** 2) % MOD
    else:
        return power_mod(n // 2, MOD) ** 2 * 2 % MOD

N = int(input())
MOD = int(1e9 + 7)
pm = power_mod(N - 1, MOD)
res = N * pm % MOD
print(res)

经测试,即使在笔记本电脑上,对于 n = 1 0 9 n=10^9 n=109的极限情况也可以瞬间算出结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值