【机器学习】多分类学习的拆分策略

本文介绍了多分类学习的三种经典拆分策略:一对一(OvO)、一对其余(OvR)和多对多(MvM)。OvO虽然训练分类器数量多,但在类别众多时训练时间较短;OvR训练时间长,但分类器数量少。MvM中的ECOC编码通过分类器预测组成的编码与类别编码比较,实现一定的纠错能力。编码长度与纠错能力成正比,但过长会增加计算和存储成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【机器学习】多分类学习

    现实中常遇到多分类学习任务。有些二分类学习方法可直接推广到多分类,但在更多情形下,我们是基于一些基本策略,利用二分类学习器来解决多分类问题。所以多分类问题的根本方法依然是二分类问题。

    考虑N个类别C1,C2 …,CN,多分类学习的基本思路是“拆解法”即将多分类任务拆为若干个二分类任务求解。具体来说,先对问题进行拆分,然后为拆出的每个二分类任务训练一个分类器。在测试时,对这些分类器的预测结果进行集成以获得最终的多分类结果。这里的关键是如何对多分类任务进行拆分,以及如何对多个分类器进行集成。

    本节主要介绍拆分策略。

    最经典的拆分策略有三种:

        (1)"一对一" (OvO)

        (2)"一对其余"(OvR)

        (3)"多对多" (MvM)

    给定数据集:

        

(1) OvO

    OvO将这N个类别两两配对,从而产生N(N-1)/2个二分类任务,例如OvO将为区分类别Ci和Cj训练一个分类器,该分类器把D中的Ci类样例作为正例,Cj类样例作为反例。在测试阶段,新样本将同时提交给所有分类器,于是我们将得到N(N-1)/2个分类结果,最终结果可通过投票产生:即把被预测得最多的类别作为最终分类结果。图3.4给出了一个示意图。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值