用 LM Studio 1 分钟搭建可在本地运行大型语言模型平台替代 ChatGPT

LMStudio是一个允许用户在本地离线运行大型语言模型的平台,提供脱机功能、应用内聊天界面、模型下载支持(如GGMLLama、MPT和StarCoder)以及隐私保护。它旨在降低对云服务的依赖,适合研究人员和开发者在本地环境工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

📌 简介

LM Studio是一个允许用户在本地离线运行大型语言模型(LLMs)的平台,它提供了一种便捷的方式来使用和测试这些先进的机器学习模型,而无需依赖于互联网连接。以下是LM Studio的一些关键特性:

  1. 脱机:用户可以在自己的笔记本电脑上运行LLMs,完全不需要在线连接。

  2. 用户界面:LM Studio提供了一个应用内聊天界面,用户可以通过这个界面与模型交互,或者使用一个与OpenAI兼容的本地服务器。

  3. 模型下载:用户可以从Hugging Face的🤗(即Hugging Face公司)仓库下载任何兼容的模型文件。

  4. 模型支持:LM Studio支持多种ggml Llama、MPT和StarCoder模型,这些模型都可以在Hugging Face上找到。

  5. 系统要求:为了运行LM Studio,用户需要M1/M2/M3 Mac,或者支持AVX2指令集的Windows PC。同时,它还提供了Linux系统的beta版本。

  6. 技术文档:LM Studio 提供了技术文档,以帮助用户更好地理解和使用这个平台。

  7. 项目支持:LM Studio的实现得益于llama.cpp项目。

  8. 隐私:当在本地运行模型时,没有信息被传输到云。尽管在使用GPT-4、Bard和claude 2等基于云的模型时,隐私问题可能被夸大了,但在本地运行模型可以避免任何问题。

  9. 实验:如果你看到了生成人工智能的价值,可以通过测试了解模型的细节并知道还有什么可用。

  10. 成本:开源模型是免费的,其中一些可以不受限制地用于商业。

LM Studio的目标是让大型语言模型更加易于访问和使用,同时减少对云服务的依赖,这对于希望在本地环境中进行模型训练和测试的研究人员和开发者来说非常有用。通过LM Studio,用户可以在自己的设备上探索和运行最新的语言模型,从而更好地控制数据隐私和安全性。

📌 使用说明

📍 下载安装

  • 官网下载地址:https://lmstudio.ai/

  • 按需选择要下载的版本【mac、windos、linux】

安装成功页面

📍 调整模型存储路径

  • 调整存储目录,方便管理,特别是 windos ,不要放默认的 C 盘

  • 注意存放模型的目录结构:/models/Publisher/Repository/

  • 自定义路径选择到 /models 层即可【我当时这里折腾了好久才加载出来模型】

注意存放模型的目录结构

📍 模型下载

安装之后打开, 搜索对应大模型, 下载, 举例: baichuan

点击左侧菜单栏文件夹图标进行管理

下载模型失败问题

如果出现下载模型失败问题,可以复制模型地址,然后用浏览器打开下载。关于网络问题:https://user.by.ltd/aff.php?aff=23165​​

📍 聊天

点击左侧菜单栏聊天图标, 新建聊天, 输入框输入内容

可能对回答的结果并不满意, 我们可以点击结果后面的编辑, 更正结果, 多次训练后, ai就回回复我们想要的答案

📍 API接口

点击菜单栏倒数第二个图标, 进入api页面; 随意设置一个端口号, 启动服务

打开浏览器查看服务是否启动

 AI 大模型全栈知识库👇

https://www.yuque.com/lhyyh/ai

我是一名资深 AI 全栈工程师,持续分享 AI 相关知识,感兴趣的小伙伴欢迎关注并一起学习、交流💪

 

<think>好的,我现在要帮用户解决如何将DeepSeek部署到本地且有可视化界面,还要免费的问题。首先,我需要确认用户提到的“DeepSeek”具体指什么。因为DeepSeek可能是一个AI模型或者某个特定软件,但根据常见的部署需求,可能是指类似ChatGPT的开源模型,比如DeepSeek-R1或者DeepSeek-Math之类的模型。不过,用户可能误将某个模型称为DeepSeek,或者是指某个特定的开源项目。需要先明确这一点。 假设用户指的是类似LLM(大语言模型)的开源项目,比如DeepSeek-7B之类的模型,那么部署到本地需要几个步骤:获取模型、搭建环境、部署模型、创建API接口、构建可视化界面。同时,要确保所有工具都是免费的。 首先,用户需要确认模型的可用性。比如,DeepSeek的开源模型可能在Hugging Face或GitHub上提供下载。需要检查模型是否开放权重,以及使用许可是否允许本地部署。 然后,环境搭建可能需要Python、PyTorch或TensorFlow等框架。用户需要安装这些依赖,并确保硬件符合要求,比如有足够的GPU内存,否则可能需要量化模型或使用CPU推理,但速度会慢。 接下来,部署模型可能需要使用像FastAPI或Flask来创建API服务。这样,模型可以通过HTTP请求进行交互。 可视化界面部分,可以考虑使用Gradio或Streamlit这两个免费的Python库,它们能快速构建Web界面,并且与模型API对接。这两个库都是开源的,适合本地部署。 不过,可能存在一些问题。例如,用户是否有足够的硬件资源?如果模型很大,比如7B参数,可能需要至少16GB的RAM和足够的显存。如果用户只有CPU,推理速度会很慢,但可能仍然可行。 另外,模型的下载和加载可能需要一定的技术知识,比如使用transformers库加载模型,处理可能的依赖冲突。需要指导用户正确安装库的版本。 还要考虑是否有现成的示例代码或教程。例如,Hugging Face的模型页面通常有使用示例,用户可以参考这些代码进行部署。同时,Gradio和Streamlit都有官方文档和社区支持,方便用户构建界面。 可能的步骤总结如下: 1. 获取模型:从Hugging Face或官方渠道下载模型文件。 2. 安装依赖:Python环境、PyTorch、transformers库等。 3. 编写推理代码:使用模型进行预测的脚本。 4. 创建API:用FastAPI或Flask包装模型推理函数。 5. 构建前端:使用Gradio或Streamlit创建交互式界面,并连接到API。 6. 运行服务:启动API和前端服务,通过浏览器访问。 需要提醒用户注意模型许可,确保遵守开源协议。同时,免费的工具可能存在性能限制,尤其是大型模型在本地运行可能较慢。如果用户遇到问题,可能需要调试环境配置或代码错误。 另外,是否有其他替代方案?比如使用Ollama或LM Studio这类工具,它们简化了本地部署,并提供GUI。但需要确认是否支持所需的DeepSeek模型。 最后,确保步骤清晰,分步说明,并给出具体的代码示例和命令,帮助用户一步步完成部署。</think>以下是分步指南,帮助你在本地免费部署DeepSeek(假设为开源LLM)并添加可视化界面: --- ### **步骤1:确认模型来源** 1. 访问Hugging Face官网(huggingface.co) 2. 搜索确认是否存在官方开源的DeepSeek模型(如`deepseek-ai/deepseek-llm-7b-chat`) 3. 检查模型文件是否包含: - `pytorch_model.bin` (模型权重) - `config.json` (配置文件) - `tokenizer.json` (分词器) --- ### **步骤2:准备Python环境** ```bash # 创建虚拟环境 conda create -n deepseek_env python=3.10 conda activate deepseek_env # 安装核心依赖 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # 根据CUDA版本选择 pip install transformers accelerate gradio ``` --- ### **步骤3:编写模型加载代码** 创建`deepseek_app.py`: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # 加载模型(修改为你的实际路径) model_path = "./deepseek-7b-chat" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") def generate_response(input_text): inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) # 创建Gradio界面 interface = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=2, placeholder="输入你的问题..."), outputs="text", title="DeepSeek 本地版" ) interface.launch(server_port=7860, share=False) # 通过localhost:7860访问 ``` --- ### **步骤4:优化部署方案** 1. **硬件不足时的解决方案**: ```python # 使用4-bit量化(需安装bitsandbytes) model = AutoModelForCausalLM.from_pretrained( model_path, load_in_4bit=True, device_map="auto" ) ``` 2. **API服务化**(可选): 使用FastAPI创建API: ```python from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Query(BaseModel): prompt: str @app.post("/chat") async def chat(query: Query): return {"response": generate_response(query.prompt)} ``` --- ### **步骤5:启动服务** ```bash # 直接运行Gradio应用 python deepseek_app.py # 如果使用FastAPI uvicorn api:app --host 0.0.0.0 --port 8000 ``` --- ### **常见问题解决** 1. **显存不足**: - 尝试更小的模型版本(如1.3B/7B) - 使用CPU模式(添加`device_map="cpu"`) 2. **依赖冲突**: ```bash pip freeze > requirements.txt # 导出依赖列表排查冲突 ``` 3. **中文支持**: 在prompt中明确指定语言: ```python def generate_response(input_text): formatted_input = f"用中文回答:{input_text}" # ...后续代码不变... ``` --- ### **替代方案推荐** 1. **使用Ollama**(需确认模型支持): ```bash ollama run deepseek # 如果存在官方镜像 ``` 2. **LM Studio工具**: - 下载地址:lmstudio.ai - 支持直接加载GGUF格式的模型 --- **注意事项**: 1. 确认模型许可协议允许本地部署 2. 7B模型需要至少10GB磁盘空间 3. 首次运行会自动下载依赖(需稳定网络) 通过上述步骤,你可以在本地拥有一个类似ChatGPT的可视化对话界面,整个过程无需支付任何云服务费用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AGI舰长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值