百川智能发布「全场景深度思考模型」,开源Baichuan-M1医疗增强大模型!

国内首个全场景深度思考模型 Baichuan-M1-preview

1 月 24 日,百川智能发布了国内首个全场景深度思考模型 Baichuan-M1-preview

相比其他推理模型,Baichuan-M1-preview 同时具备语言推理、视觉推理、搜索推理三个维度的全面推理能力,各项能力在多个领域的主流开源、闭源评测集上表现出众。

图片

在语言推理方面,Baichuan-M1-preview 在 AIME、Math 等数学基准测试以及LiveCodeBench代码任务上的表现均优于 o1-preview 等模型,展现了其强大的语言理解和处理能力。

图片

在视觉推理能力上,Baichuan-M1-preview 在 MMMU-val、MathVista 等权威评测中的成绩也超越了 GPT-4o、Claude3.5 Sonnet、QVQ-72B-Preview 等模型,进一步证明了其跨领域的卓越性能。

图片

目前 Baichuan-M1-preview 已在百小应App中正式上线。

图片

行业首个开源医疗增强大模型 Baichuan-M1-14B

百川智能还推出了行业首个开源的医疗增强大模型 Baichuan-M1-14B,作为 Baichuan-M1-preview 的小尺寸版本,Baichuan-M1-14B 在保持高性能的同时,更加灵活易用。

Baichuan-M1-14B 在通用能力和医疗领域表现出色,尤其在医疗场景中表现优异。

在 cmexam、clinicalbench_hos、clinicalbench_hos、erke 等权威医学知识和临床能力评测上,Baichuan-M1-14B 的成绩超越了更大参数量的 Qwen2.5-72B-Instruct,与 o1-mini 也相差无几。

图片

通过 20 万亿token的高质量数据训练,Baichuan-M1-14B 在多个医疗科室实现了细粒度建模,并引入创新模型结构,提升了上下文理解和长序列任务表现。

图片

Baichuan-M1-14B 开源链接:

  • Github: https://github.com/baichuan-inc/Baichuan-M1-14B

  • Huggingface(base): https://huggingface.co/baichuan-inc/Baichuan-M1-14B-Base

  • Huggingface(Instruct): https://huggingface.co/baichuan-inc/Baichuan-M1-14B-Instruct

  • NPU版本支持BF16推理:https://modelers.cn/models/MindIE/Baichuan-M1-14B-Base

    参考:
    https://mp.weixin.qq.com/s/hv8dYkKCimEadH9xFnGMtA

    欢迎各位关注我的微信公众号:HsuDan,我将分享更多自己的学习心得、避坑总结、面试经验、AI最新技术资讯。

    内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值