神经网络基础(二)——感知机回归

1. 激活函数

感知机一文中提到了感知机模型在分类问题上的应用,如果,我们需要将其使用于回归问题呢,应该怎样处理呢?

其实只要修改算法的最后一步,
s i g n ( x ) = { + 1 , x ≥ 0 − 1 , x < 0 (1.1) sign(x)=\left\{\begin{matrix} +1 &, x\geq 0\\ -1 &, x< 0 \end{matrix}\right. \tag{1.1} sign(x)={+11,x0,x<0(1.1)
函数即可。经过sign函数的处理,只可能是两个值,要么1,要么-1,。如果将最后的sign函数改成该函数:
f ( x ) = x (1.2) f(x)=x \tag{1.2} f(x)=x(1.2)
那么,最后的输出值就是一个实数而不是1或-1中的一个值了,这样就达到了回归的目的。


2. 损失函数

在实际问题中,损失函数是根据不同的问题进行设计的,因此,单单改变了激活函数还不够,还需要改变损失函数,通常情况下,回归问题使用的损失函数为:
e = 1 2 ( y − y ^ ) 2 (2.1) e=\frac{1}{2}(y-\hat{y})^2 \tag{2.1} e=21(yy^)2(2.1)
在公式(2.1)中, y y y表示训练样本里面的标记,也就是实际值; y ^ \hat{y} y^表示模型计算的出来的预测值。 e e e叫做单个样本的误差。至于为什么前面要乘 1 / 2 1/2 1/2,是为了后面计算方便。

根据公式(2.1),在 n n n个样本的数据集中,可以将总误差 E E E记为:
E = 1 2 ∑ i = 1 n ( y ( i ) − y ^ ( i ) ) 2 (2.2) \begin{aligned} E&=\frac{1}{2}\sum_{i=1}^{n}(y^{(i)}-\hat{y}^{(i)})^2 \end{aligned} \tag{2.2} E=21i=1n(y(i)y^(i))2(2.2)
在公式(2.2)中, y ( i ) y^{(i)} y(i)表示第 i i i个样本的真实值, y ^ ( i ) \hat{y}^{(i)} y^(i)表示第 i i i个样本的预测值。且
y ^ ( i ) = h ( x ( i ) ) = w T x ( i ) (2.3) \begin{aligned} \hat{y}^{(i)}&=h(\mathrm{x}^{(i)})\\ &=\mathrm{w}^T\mathrm{x^{(i)}} \end{aligned} \tag{2.3} y^(i)=h(x(i))=wTx(i)(2.3)
我们的目的,是训练模型:求取到合适的 w \mathrm{w} w,使(2.2)取得最小值。


3. 求参数的方法

3.1 极大似然估计

该方法之前有提到过,大致思路为让损失函数对参数求导并令其为0,求出参数的值。具体的可以参考线性回归模型 ,但该方法仅适用于激活函数为 f ( x ) = x f(x)=x f(x)=x的情况。

3.2 梯度下降算法

该方法是计算机通过强大的计算能力,一步步把极值点“试”出来,大致过程如下:
在这里插入图片描述
还记的感知机学习的步骤吗?主要是解决两个问题:

  1. 往哪走?
  2. 走多远?

首先随机选择一个点 x x x,在之后的过程中每次修改该点,经过数次迭代之后最终到达函数的最小值点。根据梯度的性质:梯度的反方向是函数值下降最快的方向,每次沿着梯度相反的方向修改 x x x的值,最后是有可能走到极小值附近的。该公式可以表示为:
x n e w = x o l d − η ∇ f ( x ) (3.1) \mathrm{x}_{new}=\mathrm{x}_{old}-\eta\nabla{f(x)} \tag{3.1} xnew=xoldηf(x)(3.1)
将其应用于我们的目标函数的权值中时,则有
w n e w = w o l d − η ∇ E ( w ) (3.2) \begin{aligned} \mathrm{w}_{new}=&\mathrm{w}_{old}-\eta\nabla{E(\mathrm{w})}\\ \tag{3.2} \end{aligned} wnew=woldηE(w)(3.2)
∇ E ( w ) \nabla{E(\mathrm{w})} E(w)则有:
∇ E ( w ) = ∂ ∂ w E ( w ) = ∂ ∂ w 1 2 ∑ i = 1 n ( y ( i ) − y ^ ( i ) ) 2 = 1 2 ∂ ∂ w ∑ i = 1 n ( y ( i ) 2 − 2 y ^ ( i ) y ( i ) + y ^ ( i ) 2 ) = 1 2 ∂ ∂ w ∑ i = 1 n ( − 2 y ^ ( i ) y ( i ) + y ^ ( i ) 2 ) = 1 2 ∑ i = 1 n [ − 2 y ( i ) ∂ y ^ ( i ) ∂ w + ∂ y ^ ( i ) 2 ∂ w ] = 1 2 ∑ i = 1 n [ − 2 y ( i ) ∂ w T x ( i ) ∂ w + 2 y ^ ( i ) ∂ w T x ( i ) ∂ w ] = 1 2 ∑ i = 1 n [ − 2 y ( i ) x ( i ) + 2 y ^ ( i ) x ( i ) ] = − ∑ i = 1 n ( y ( i ) − y ^ ( i ) ) x (3.3) \begin{aligned} \nabla{E(\mathrm{w})}&=\frac{\partial}{\partial\mathrm{w}}E(\mathrm{w})\\ &=\frac{\partial}{\partial\mathrm{w}}\frac{1}{2}\sum_{i=1}^{n}(y^{(i)}-\hat{y}^{(i)})^2\\ &=\frac{1}{2}\frac{\partial}{\partial\mathrm{w}}\sum_{i=1}^{n}(y^{(i)2}-2\hat{y}^{(i)}y^{(i)}+\hat{y}^{(i)2})\\ &=\frac{1}{2}\frac{\partial}{\partial\mathrm{w}}\sum_{i=1}^{n}(-2\hat{y}^{(i)}y^{(i)}+\hat{y}^{(i)2})\\ &=\frac{1}{2}\sum_{i=1}^{n}[-2y^{(i)}\frac{\partial \hat{y}^{(i)}}{\partial\mathrm{w}}+\frac{\partial \hat{y}^{(i)2}}{\partial \mathrm{w}}]\\ &=\frac{1}{2}\sum_{i=1}^{n}[-2y^{(i)}\frac{\partial \mathrm{w}^T\mathrm{x^{(i)}}}{\partial\mathrm{w}}+2\hat{y}^{(i)}\frac{\partial \mathrm{w}^T\mathrm{x^{(i)}}}{\partial \mathrm{w}}]\\ &=\frac{1}{2}\sum_{i=1}^{n}[-2y^{(i)}\mathrm{x^{(i)}}+2\hat{y}^{(i)}\mathrm{x^{(i)}}]\\ &=-\sum_{i=1}^{n}(y^{(i)}-\hat{y}^{(i)})\mathrm{x} \tag{3.3} \end{aligned} E(w)=wE(w)=w21i=1n(y(i)y^(i))2=21wi=1n(y(i)22y^(i)y(i)+y^(i)2)=21wi=1n(2y^(i)y(i)+y^(i)2)=21i=1n[2y(i)wy^(i)+wy^(i)2]=21i=1n[2y(i)wwTx(i)+2y^(i)wwTx(i)]=21i=1n[2y(i)x(i)+2y^(i)x(i)]=i=1n(y(i)y^(i))x(3.3)
所以,梯度更新公式为:
w n e w = w o l d + η ∑ i = 1 n ( y ( i ) − y ^ ( i ) ) x ( i ) (3.4) \mathrm{w}_{new}=\mathrm{w}_{old}+\eta\sum_{i=1}^{n}(y^{(i)}-\hat{y}^{(i)})\mathrm{x}^{(i)} \tag{3.4} wnew=wold+ηi=1n(y(i)y^(i))x(i)(3.4)
若有M+1个特征,(常数项也包括在内),则 w , x \mathrm{w},\mathrm{x} w,x是M+1维列向量,所以(3.4)可以写成
[ w 0 w 1 w 2 . . . w m ] n e w = [ w 0 w 1 w 2 . . . w m ] o l d + η ∑ i = 1 n ( y ( i ) − y ^ ( i ) ) [ 1 x 1 ( i ) x 2 ( i ) . . . x m ( i ) ] \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ ... \\ w_m \\ \end{bmatrix}_{new}= \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ ... \\ w_m \\ \end{bmatrix}_{old}+\eta\sum_{i=1}^{n}(y^{(i)}-\hat{y}^{(i)}) \begin{bmatrix} 1 \\ x_1^{(i)} \\ x_2^{(i)} \\ ... \\ x_m^{(i)} \\ \end{bmatrix} w0w1w2...wmnew=w0w1w2...wmold+ηi=1n(y(i)y^(i))1x1(i)x2(i)...xm(i)

4. 与分类器的比较

算法分类回归
模型 s i g n ( x ) = { + 1 , x ≥ 0 − 1 , x < 0 sign(x)=\left\{\begin{matrix}+1 &, x\geq 0\\ -1 &, x< 0\end{matrix}\right. sign(x)={+11,x0,x<0 f ( x ) = x f(x)=x f(x)=x
训练规则 w ← w + η ( y − y ^ ) x \mathrm{w}\gets\mathrm{w}+\eta(y-\hat{y})\mathrm{x} ww+η(yy^)x w ← w + η ( y − y ^ ) x \mathrm{w}\gets\mathrm{w}+\eta(y-\hat{y})\mathrm{x} ww+η(yy^)x

5. 参考文献

  • 西瓜书
  • 统计学习方法
  • 零基础入门深度学习
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值