线性代数的本质

视频来源:线性代数的本质

1. 向量究竟是什么?

向量有2种解释:

  • 空间中的箭头。决定向量的是它的长度以及它所指向的方向
  • 有序的数字列表。假设正在做一个房价的预测,那么,

[ 100 22 ] \begin{aligned} \begin {bmatrix} 100 \\ 22 \end {bmatrix} \end{aligned} [10022] 就是一个二维的向量。
其中,每一个数字告诉你在坐标轴中沿该方向走多远。

2. 向量的线性组合、基、张成的空间

[ 100 22 ] \begin{aligned} \begin {bmatrix} 100 \\ 22 \end {bmatrix} \end{aligned} [10022]表示了这两个数如何拉伸或者压缩一个向量。

而在 x o y xoy xoy坐标系中,有两个特殊的向量,即 x x x方向的单位向量, y y y方向的单位向量**(基向量)。该空间中的任意向量都可以为这组向量经过缩放或者相加后**得到的结果

向量的线性组合

u → \overrightarrow{u} u v → \overrightarrow{v} v 是两个向量,则 a u → + b v → a\overrightarrow{u}+b\overrightarrow{v} au +bv u → \overrightarrow{u} u v → \overrightarrow{v} v 的线性组合。

张成的空间

a u → + b v → a\overrightarrow{u}+b\overrightarrow{v} au +bv 组合的所有结果称为 u → \overrightarrow{u} u v → \overrightarrow{v} v 张成的空间

线性相关

u → \overrightarrow{u} u v → \overrightarrow{v} v 是两个向量,如果至少有一个向量对张成的弓箭没有任何的贡献,则称为是线性相关的。( u → \overrightarrow{u} u v → \overrightarrow{v} v 本来可以张成一个面的,结果二者搞成了一条线,则说明 u → \overrightarrow{u} u v → \overrightarrow{v} v 是线性相关的。)
严格的说,某一个向量是其他向量的线性组合,则蓓表示的向量与其他向量是线性相关的

3. 矩阵与线性变换

线性变换(旋转与剪切)

线性变化类似于函数的功能,输入一个向量,并且输出该向量的变换。
当满足如下两个条件时,变换为线性的:

  1. 直线在变换之后仍然为直线,没有发生弯曲。
  2. 原点必须保持固定
捕捉线性变换的方式:
  • w → : [ x y ] \overrightarrow{w}: \begin {bmatrix} x \\ y \end {bmatrix} w [xy]是任意一个向量。 i → : [ a c ] \overrightarrow{i}: \begin {bmatrix} a \\ c \end {bmatrix} i :[ac] j → : [ b d ] \overrightarrow{j}: \begin {bmatrix} b \\ d \end {bmatrix} j :[bd]为基向量,则只要记录下 i → \overrightarrow{i} i j → \overrightarrow{j} j 的变化,就可以推断出 w → \overrightarrow{w} w 在变换之后的位置,不必在乎原本 w → \overrightarrow{w} w 是什么样的
    图1. 线性变换的本质
  • 也可以把矩阵向量的乘法看作他们的线性组合

4. 行列式

行列式的几何意义?

线性变换的另一个角度的理解:度量了一个变换对空间究竟有多少的拉伸或者挤压。更具体的:测量一个给定区域面积增大或者减少的比例
[ 3 0 0 2 ] \begin {bmatrix} 3 & 0 \\ 0 & 2 \end {bmatrix} [3002]为例,就是把单位向量变换成了一个 2 ∗ 3 2*3 23的矩形。同理,对于该向量空间的其他面积来说,变换比例与单位面积变换的比例相同。
图2. 行列式的几何意义

行列式为0,代表着什么?

若变换为0,则是将该向量空间压缩到了一条直线或者一个点上。

可以这么说,二维空间的行列式给出的是面积放缩的比例,那么在三维空间中,行列式给出的是体积放缩的比例

图3. 二维向量中行列式变换过程对应的物理意义

5. 逆矩阵、列空间与零空间

图4. 方程组与行列式
在上图中,矩阵 A A A代表一种线性变换,因此,求解 A x → = v → A\overrightarrow{x}=\overrightarrow{v} Ax =v ,意味着需要寻找一个向量 x → \overrightarrow{x} x ,使得变换后与 v → \overrightarrow{v} v 重合。

行列式与方程组的解之间,有啥关系吗?

一般来说,矩阵中两个变换的相继作用体现为矩阵的乘法,在图4中,只要矩阵 A A A不将 x → \overrightarrow{x} x 降维( A A A的行列式不为0)它就存在逆变换。如果 A A A的行列式为0,那这个变换就对空间进行了降维打击,此时就没有逆变换,因为将一条线解压缩称为一个面是没有意义的

行列式为0,解可能存在吗?

但是,当矩阵 A A A的逆变换不存在的时候,解依然可能存在,例如当矩阵 A A A刚好将三维空间降维压缩成二维的一条线,运气做够好我们的 v → \overrightarrow{v} v 向量刚好处在这根线上,那么,这样的情况解就存在。

秩是啥玩意?

矩阵 A A A的变换结果是一维的(一条线),这个时候秩为1。秩代表的是变换后空间的维度

列空间

矩阵 A A A代表着基向量变换后的结果,故而,列空间就是矩阵 A A A的列所张成的空间。

零空间

变换之后,向量落在原点的集合。

6. 非方阵

[ 3 2 ] \begin {bmatrix} 3 \\ 2 \end {bmatrix} [32] 经过变换后得到 [ 1 7 8 ] \begin {bmatrix} 1 \\ 7 \\ 8 \end {bmatrix} 178:意味着:
维度为3*2的矩阵

同样的:

  • [ 1 1 7 4 8 2 ] \begin {bmatrix} 1 & 1 \\ 7 & 4 \\ 8 & 2 \end {bmatrix} 178142所代表的就是:在三维空间中过原点的二维平面。(将三维映射到二维上,每一个基向量(共两个)在变换后都用三个坐标表示)
  • [ 1 1 6 7 4 2 ] \begin {bmatrix} 1 & 1 & 6 \\ 7 & 4 & 2 \end {bmatrix} [171462]则代表的是:将一个三维的压缩成二维的。
    image.png
    视频来源:线性代数的本质

7. 点积究竟是什么?

u → \overrightarrow{u} u v → \overrightarrow{v} v 相乘,几何意义是: u → \overrightarrow{u} u v → \overrightarrow{v} v 上投影的长度 v → \overrightarrow{v} v 的长度。
图1. 点积的集合意义

  • 当两个向量方向大致相同时,点积结果为正
  • 当两个向量方向垂直,点积结果为0
    当两个向量方向大致相反,点积结果为负
点积(对应坐标相乘)与向量之间投影有毛线关系?

[ 1 2 ] \begin {bmatrix} 1 & 2 \end {bmatrix} [12]的直观理解:二维平面中, i → \overrightarrow{i} i j → \overrightarrow{j} j 被变换之后,可以用一维中的一条线来表示。:在数轴上表示为

此时,我们把这条直线放在二维平面中,然后找一个向量,与这条直线完全重合,这个时候,二维空间中的基向量,在 u → \overrightarrow{u} u 上的投影 = u → \overrightarrow{u} u 在基向量上的投影。
注意红框标注的地方

在与向量 [ 3 4 ] \begin {bmatrix} 3 \\ 4 \end {bmatrix} [34]相乘后,

注意:不管任何一个二维到一维的线性变换,都能够在二维空间中找到一个与之对应的向量。这个向量的目的:是把2 * 1维的向量($\overrightarrow{v} $),都变成一个数。

8. 叉积究竟是什么?

前面提到过,行列式可以度量两个向量面积增大或减少的比例(跟基向量相比)。两个三维向量 v → \overrightarrow{v} v w → \overrightarrow{w} w 生成一个新的三维向量 p → \overrightarrow{p} p p → \overrightarrow{p} p 的长度,就是 v → \overrightarrow{v} v w → \overrightarrow{w} w 围成平行四边形的面积,方向需要根据右手定则来确定。

叉积的运算法则

image.png

9. 基变换?

可以这么看,同样在一个空间维度中(在同一个地球上),不同的基就相当于说不同语言的人(中文、英语)有一天,Bill想认识一个女孩,于是问你该怎么办。

  1. 目标向量左乘基变换矩阵(他的目的:“我想约她,我要怎么办”:翻译成中文===用我们的语言描述他的基向量,此时的结果是表达同样的意思,但是是用我们的语言描述的)
  2. 第一步结果左乘线性变换矩阵(你了解后:提供建议)
  3. 第二步结果左乘基变换矩阵的逆(你把你的建议翻译成英文)

10. 特征值与特征向量

前面提到过,空间中的向量都可以通过基向量进行变换、裁剪得到,那么,一个向量在变换和裁剪的过程中,基向量所张成的空间其实或多或少都发生了改变,然而,有一些很皮的向量,仍然留在他们原来张成的空间中,这些很皮的向量,就称作为:特征向量,每个特征向量都有一个所属的值,被称为“特征值”。

特征值的大白话解释:其实就是**衡量特征向量在变换中拉伸或者压缩比例的因子。

在三维空间中,如果向量张成的空间(一个立体物体),在变换过程中按照某个值旋转了,那么,旋转的轴就是特征向量。

特征向量与特征值的计算公式

KaTeX parse error: No such environment: equation at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{aligned…
v → \overrightarrow{v} v 为零向量时,本身没有任何帮助,因此,我们需要当 v → \overrightarrow{v} v 为非零向量时,使 ( A − λ ⋅ I ) (A- \lambda·I) (AλI)与之相乘为 0 → \overrightarrow{0} 0 。即,要求 ( A − λ ⋅ I ) (A- \lambda·I) (AλI)能够对 v → \overrightarrow{v} v 实行降维,若要降维,则需要其对应的行列式为0

需要注意的一点是:有几个特征值,不代表有几个特征向量。 [ 1 1 0 1 ] \begin {bmatrix} 1 & 1\\ 0 & 1 \end {bmatrix} [1011]特征值为1,特征向量对应一条。但是,若 [ 2 1 0 2 ] \begin {bmatrix} 2 & 1\\ 0 & 2 \end {bmatrix} [2012]特征值为2,但是特征向量却不止一条,原本空间中所有的向量都是其特征向量。

对角矩阵

如果你足够幸运,你的矩阵为对角矩阵,like this: [ 2 0 0 3 ] \begin {bmatrix} 2 & 0\\ 0 & 3 \end {bmatrix} [2003]。那么,对角线上的每一个元素都是特征值,为什么?因为在原本的空间中,基向量本身就是特征向量,你只是将原本的坐标轴进行了拉伸或者压缩,并没有进行剪切,因此,基向量还是原来的基向量
百度上找的一道例题

11. 抽象向量空间

线性的定义:
线性的定义

怎样把一堆多项式,转换到空间中?
空间与多项式的关系

注意上图中基函数的定义

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值