hdu-2588 GCD

http://acm.hdu.edu.cn/showproblem.php?pid=2588

题意:输入 N 和 M (2<=N<=1000000000, 1<=M<=N),
           找出所有的X满足1<=X<=N 且 gcd(X,N)>=M.
此题数据量很大,用常规方法肯定超时
思路:首先,求出N的所有约数g[],然后枚举那些 >=M 的公约数g[i],
           结果为 所有 n/g[i] 的欧拉函数的值的和
解释:若x>=M,且x是N的约数,故 gcd(x,N)=x>=M
      令y=N/x, 则y 的欧拉函数为 小于y的且和y互质的数的个数
d     设小于y的且和y互质的数为p[1],p[2],p[3]. ..p[n] ,则 gcd(x*p[i],N)=x>=M
      故 所有 n/g[i] 的欧拉函数的值的和 就是所求的答案了。
     

#include<cstdio>
#include<cmath>
using namespace std;
int euler(int n)  //求欧拉函数
{
    int m=(int)sqrt(n+0.5);
    int i,ans=n;
    for(i=2;i<=m;i++)
    {
       if(n%i==0)
       {
           ans=ans/i*(i-1);
           while(n%i==0) n/=i;
       }
    }
    if(n>1) ans=ans/n*(n-1);
    return ans;
}

int main()
{
    int t,n,m;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        int ans=0;
        int sq_n=sqrt(n+0.5);
        for(int i=2;i<=sq_n;i++)
        {
            if(n%i==0)
            {
                if(i>=m) ans+=euler(n/i);
                if(n/i>=m) ans+=euler(i);
            }
        }
        if(n!=1&&sq_n*sq_n==n&&sq_n>=m) ans-=euler(sq_n);  //多算了一次,剪掉
        printf("%d\n",ans+1);
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值