论文笔记-Identity Mappings in Deep Residual Networks

本文深入探讨了深度残差网络(Residual Networks)中身份映射(Identity Mapping)的重要性,揭示了它如何确保梯度在前向和反向传播中畅通无阻,从而简化训练过程。实验表明,身份映射是最佳选择,能实现最快误差减少和最低训练损失。分析还比较了不同类型的skip connections,证明了非身份映射可能导致优化难题。
摘要由CSDN通过智能技术生成

论文题目:Identity Mappings in Deep Residual Networks

--Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

Abstract

文章分析了 ResNet 中 Identity mapping 为什么比较好,为何能让梯度在网络中顺畅的传递而不会爆炸或消失,实验方面 1001层的 ResNet 在CIFAR10上4.62%的错误率,在CIFAR100和ImageNet上也做了实验。

Introduction

先回顾下ResNet中的 Residual Units:

Residual Units可以如下表示:上图中的H与下面的h不是一个东西,别管上图了,从两篇文章截的图,有点不一样。

上面公式中:h 表示 shortcut 使用什么形式的变换(Resdual Net论文[1]中给出了A,B,C3种,最后用的 Identity map,也就是 h(x)= x,这篇文章进一步分析了 Identity map 为什么好)

 F 是 residual function。F= y-h(x)

f 为Residual Units输出处使用的函数,[1] 中用的ReLU,即上图中最下面那个relu。

本文提出 f 也该用 Identi

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值