原文:Identity Mappings in Deep Residual Networks
译文:Identity Mappings in Deep Residual Networks(译)_小时候贼聪明-CSDN博客
ResNet:ResNet论文笔记_小时候贼聪明-CSDN博客_resnet论文
目录
On the Importance of Identity Skip Connections
On the Usage of Activation Functions
Abstract
深度残差神经网络表现出了很好的分类准确率和很好的收敛特性。本文是残差网络的作者在原始resnet的基础上分析了残差块背后的数学原理,表明了无论在前向还是反向过程中,信号可以在任意一对残差块之间进行传递。同时作者设计了新的残差结构,使得网络更加易于训练和改善了网络的泛化性能。
(a)原始的残差单元 (b)本文提出的残差单元
深度残差网络(ResNets)由很多个“残差单元”组成。每一个单元(Fig.1 (a))可以表示为:
原始的ResNet论文的核心是学习残差函数F,通过使用一个恒等的跳跃式连接“shortcut”设置h(xl)=xl。
本文中,我们不只是在残差单元内部,而是要在整个网络中创建一个“直接”的计算传播路径来分析深度残差网络。我们的推导展示了:如果h(xl)和f(yl)都是恒等映射,那么在前向和反向阶段,信号可以直接的从一个单元传递到其他任意一个单元。我们的实验表明了,当框架接近于以上两种状态时,训练变得更加简单。
作者进行了两组实验:
深度残差网络的分析
原始中的残差块的计算为:
如果f也是一个恒等映射,那么可以得到:
通过递归,对任意深层单元L和任意浅层单元l可以得到: