论文阅读|Identity Mappings in Deep Residual Networks

本文深入分析了深度残差网络的工作原理,重点探讨了恒等映射在残差单元中的重要性。研究显示,无论是前向传播还是反向传播,信号都能在任意残差块之间直接传递。实验表明,保持残差块中的恒等映射和激活函数为恒等映射能简化优化过程,减少过拟合,提高网络的泛化能力。作者提出的新结构和预激活技术进一步优化了网络性能,尤其是在训练深度网络时,如1000层ResNet,能够更有效地训练并取得更高准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:Identity Mappings in Deep Residual Networks

译文:Identity Mappings in Deep Residual Networks(译)_小时候贼聪明-CSDN博客

ResNet:ResNet论文笔记_小时候贼聪明-CSDN博客_resnet论文 

目录

Abstract

深度残差网络的分析

Discussion

On the Importance of Identity Skip Connections

On the Usage of Activation Functions

Analysis

易于优化

减少过拟合

Conclusions


Abstract

深度残差神经网络表现出了很好的分类准确率和很好的收敛特性。本文是残差网络的作者在原始resnet的基础上分析了残差块背后的数学原理,表明了无论在前向还是反向过程中,信号可以在任意一对残差块之间进行传递。同时作者设计了新的残差结构,使得网络更加易于训练和改善了网络的泛化性能。

(a)原始的残差单元  (b)本文提出的残差单元

深度残差网络(ResNets)由很多个“残差单元”组成。每一个单元(Fig.1 (a))可以表示为:

原始的ResNet论文的核心是学习残差函数F,通过使用一个恒等的跳跃式连接“shortcut”设置h(xl)=xl。

本文中,我们不只是在残差单元内部,而是要在整个网络中创建一个“直接”的计算传播路径来分析深度残差网络。我们的推导展示了:如果h(xl)和f(yl)都是恒等映射,那么在前向和反向阶段,信号可以直接的从一个单元传递到其他任意一个单元。我们的实验表明了,当框架接近于以上两种状态时,训练变得更加简单。

作者进行了两组实验:

深度残差网络的分析

原始中的残差块的计算为:

 

如果f也是一个恒等映射,那么可以得到:

 通过递归,对任意深层单元L和任意浅层单元l可以得到:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值