Keras中的Embedding层是什么,怎么工作?

Keras中的Embedding层用于将单词映射到固定长度的向量。输入是单词的整数索引,输出是对应的向量表示。在训练过程中,Embedding层会学习一个权重矩阵,通过查表方式获取每个输入单词的向量。对于输入序列,该层会返回一个二维矩阵,每个位置对应输入单词的向量。输入参数包括单词表长度、输出向量长度和输入序列长度。
摘要由CSDN通过智能技术生成

在学习的过程中遇到了这个问题,同时也看到了SO中有相同的问题。而keras-github中这个问题也挺有意思的,记录一下。

这个解释很不错,假如现在有这么两句话

  • Hope to see you soon
  • Nice to see you again

在神经网络中,我们将这个作为输入,一般就会将每个单词用一个正整数代替,这样,上面的两句话在输入中是这样的

[0, 1, 2, 3, 4]

[5, 1, 2, 3, 6]

在神经网络中,第一层是

Embedding(7, 2, input_length=5)

其中,第一个参数是input_dim,上面的值是7,代表的是单词表的长度;第二个参数是o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值