Keras Embedding详解

Embedding

参考Embedding Layers

keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)


把正整数值转为固定大小的稠密向量。
嵌入层,该层只能用于模型的第一层。

Arguments

    input_dim: int > 0. Size of the vocabulary,
        i.e. maximum integer index + 1.
        特征取值的最大个数
    output_dim: int >= 0. Dimension of the dense embedding.
    全连接嵌入的维度
    
    embeddings_initializer: Initializer for the `embeddings` matrix
       嵌入矩阵的初始化方法
        
    embeddings_regularizer: Regularizer function applied to
        the `embeddings` matrix
       嵌入矩阵的正则项
    activity_regularizer: Regularizer function applied to
        the output of the layer (its "activation").
      输出层的正则项
    embeddings_constraint: Constraint function applied to
        the `embeddings` matrix
       嵌入矩阵的约束项
    mask_zero: Whether or not the input value 0 is a special "padding"
        value that should be masked out.
        This is useful when using [recurrent layers](recurrent.md)
        which may take variable length input.
        If this is `True` then all subsequent layers
        in the model need to support masking or an exception will be raised.
        If mask_zero is set to True, as a consequence, index 0 cannot be
        used in the vocabulary (input_dim should equal size of
        vocabulary + 1).
        布尔值,确定是否将输入中的‘0’看作是应该被忽略的‘填充’(padding)值,该参数在使用递归层处理变长输入时有用。设置为True的话,模型中后续的层必须都支持masking,否则会抛出异常。如果该值为True,则下标0在字典中不可用,input_dim应设置为|vocabulary| + 1。

    input_length: Length of input sequences, when it is constant.
        This argument is required if you are going to connect
        `Flatten` then `Dense` layers upstream
        (without it, the shape of the dense outputs cannot be computed).
        当输入序列的长度固定时,该值为其长度。如果要在该层后接Flatten层,然后接Dense层,则必须指定该参数,否则Dense层的输出维度无法自动推断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值