Embedding
keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)
把正整数值转为固定大小的稠密向量。
嵌入层,该层只能用于模型的第一层。
Arguments
input_dim: int > 0. Size of the vocabulary,
i.e. maximum integer index + 1.
特征取值的最大个数
output_dim: int >= 0. Dimension of the dense embedding.
全连接嵌入的维度
embeddings_initializer: Initializer for the `embeddings` matrix
嵌入矩阵的初始化方法
embeddings_regularizer: Regularizer function applied to
the `embeddings` matrix
嵌入矩阵的正则项
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
输出层的正则项
embeddings_constraint: Constraint function applied to
the `embeddings` matrix
嵌入矩阵的约束项
mask_zero: Whether or not the input value 0 is a special "padding"
value that should be masked out.
This is useful when using [recurrent layers](recurrent.md)
which may take variable length input.
If this is `True` then all subsequent layers
in the model need to support masking or an exception will be raised.
If mask_zero is set to True, as a consequence, index 0 cannot be
used in the vocabulary (input_dim should equal size of
vocabulary + 1).
布尔值,确定是否将输入中的‘0’看作是应该被忽略的‘填充’(padding)值,该参数在使用递归层处理变长输入时有用。设置为True的话,模型中后续的层必须都支持masking,否则会抛出异常。如果该值为True,则下标0在字典中不可用,input_dim应设置为|vocabulary| + 1。
input_length: Length of input sequences, when it is constant.
This argument is required if you are going to connect
`Flatten` then `Dense` layers upstream
(without it, the shape of the dense outputs cannot be computed).
当输入序列的长度固定时,该值为其长度。如果要在该层后接Flatten层,然后接Dense层,则必须指定该参数,否则Dense层的输出维度无法自动推断。